Forward and Converse Theorems of Polynomial Approximation for Exponential Weights on [-1, 1], I

D. S. Lubinsky
Department of Mathematics, Witwatersrand University, WITS 2050, South Africa E-mail: 036DSL@COSMOS.WITS.AC.ZA
Communicated by M. v. Golitschek

Received September 26, 1995; accepted in revised form October 15, 1996

We consider exponential weights of the form $w:=e^{-Q}$ on $(-1,1)$ where $Q(x)$ is even and grows faster than $\left(1-x^{2}\right)^{-\delta}$ near ± 1, some $\delta>0$. For example, we can take

$$
Q(x):=\exp _{k}\left(\left(1-x^{2}\right)^{-\alpha}\right), \quad k \geqslant 0, \alpha>0,
$$

where $\exp _{k}$ denotes the k th iterated exponential and $\exp _{0}(x)=x$. We prove Jackson theorems in weighted L_{p} spaces with norm $\|f w\|_{L_{p}(-1,1)}$ for all $0<p \leqslant \infty$. In part II of this paper, we shall prove matching converse theorems. © 1997 Academic Press

1. STATEMENT OF RESULTS

There is a well developed theory of weighted polynomial approximation for weights $w:(-1,1) \rightarrow(0, \infty)$ that behave like Jacobi weights near ± 1 [6]. However, for weights that decay rapidly near ± 1, this theory does not apply. In this paper, we prove Jackson theorems for even weights

$$
\begin{equation*}
w:=e^{-Q} \tag{1.1}
\end{equation*}
$$

where $Q:(-1,1) \rightarrow \mathbb{R}$ is even and grows at least as fast as $\left(1-x^{2}\right)^{-\delta}$, some $\delta>0$, near ± 1. That is, we estimate

$$
\begin{equation*}
E_{n}[f]_{w, p}:=\inf _{P \in \mathscr{P}_{n}}\|(f-P) w\|_{L_{p}(-1,1)}, \tag{1.2}
\end{equation*}
$$

$0<p \leqslant \infty$, where \mathscr{P}_{n} denote the polynomials of degree at most n.

In some senses, these weights are closer to weights on \mathbb{R}, such as $\exp \left(-\exp \left(x^{2}\right)\right)$, the so-called Erdös weights on \mathbb{R}, than to the classical Jacobi weights on $(-1,1)$. This is borne out by the behaviour of the orthogonal polynomials for these weights. For further orientation on this topic, see $[6,8,10,11,15,16,18]$.

Our methods are similar to those in [5], where Jackson theorems were proved for Freud weights, and to the follow up paper [2], where Erdös weights were treated. The approach involves approximating f by a spline (or piecewise polynomial), representing the piecewise polynomial in terms of certain characteristic functions, and then approximating the characteristic functions (in a suitable sense) by polynomials. This method has the advantage of involving only hypotheses on Q^{\prime}, in contrast with the more complicated approach via orthogonal polynomials and de la Vallee Poussin sums, which typically involves hypotheses on $Q^{\prime \prime}[6,15]$.

To state our result, we need to define our class of weights, as well as various quantities. First, we say that a function $f:(a, b) \rightarrow(0, \infty)$ is quasiincreasing if $\exists C>0$ such that

$$
a<x<y<b \Rightarrow f(x) \leqslant C f(y) .
$$

Definition 1.1. Let $w:=e^{-Q}$, where
(a) $Q:(-1,1) \rightarrow \mathbb{R}$ is even, is continuous, and has limit ∞ at 1 , and Q^{\prime} is positive in $(0,1)$.
(b) $x Q^{\prime}(x)$ is strictly increasing in $(0,1)$ with right limit 0 at 0.
(c) The function

$$
\begin{equation*}
T(x):=\frac{Q^{\prime}(x)}{Q(x)} \tag{1.3}
\end{equation*}
$$

is quasi-increasing in $(C, 1)$ for some $0<C<1$.
(d) $\exists C_{1}, C_{2}, C_{3}>0$ such that

$$
\begin{equation*}
\frac{Q^{\prime}(y)}{Q^{\prime}(x)} \leqslant C_{1}\left(\frac{Q(y)}{Q(x)}\right)^{C_{2}}, \quad y \geqslant x \geqslant C_{3} . \tag{1.4}
\end{equation*}
$$

(e) For some $\delta>0,0<C<1,\left(1-x^{2}\right)^{1+\delta} Q^{\prime}(x)$ is increasing in $(C, 1)$. Then we write $w \in \mathscr{E}$.

The archetypal example of $w \in \mathscr{E}$ is

$$
\begin{equation*}
w(x):=w_{k, \alpha}(x):=\exp \left(-\exp _{k}\left(\left[1-x^{2}\right]^{-\alpha}\right)\right), \quad k \geqslant 0, \quad \alpha>0, \tag{1.5}
\end{equation*}
$$

where $\exp _{k}=\exp (\exp (\cdots))$ denotes the k th iterated exponential and $\exp _{0}(x)=x$. For this weight, we see that

$$
T(x)=2 \alpha x\left(1-x^{2}\right)^{-1-\alpha} \prod_{j=1}^{k-1} \exp _{j}\left(\left[1-x^{2}\right]^{-\alpha}\right), \quad x>0
$$

It is not too difficult to see that we can choose $C_{2}>1$ in (1.4) arbitrarily close to 1 in this case, if $k \geqslant 1$. More generally, the function $T(x)$ measures the regularity of growth of $Q(x)$.

We need the condition that $x Q^{\prime}(x)$ is strictly increasing to guarantee the existence of the Mhaskar-Rahmanov-Saff number a_{u}, the positive root of the equation

$$
\begin{equation*}
u=\frac{2}{\pi} \int_{0}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}}, \quad u>0 \tag{1.6}
\end{equation*}
$$

If we used something other than a_{u} (such as Freud's quantity q_{u}, the root of $u=q_{u} Q^{\prime}\left(q_{u}\right)$, or $Q^{[-1]}(u)$, where $Q^{[-1]}$ is the inverse of Q on $(0,1)$), we could require less of $x Q^{\prime}(x)$, namely, that it be quasi-increasing for x close to 1 . However, this would complicate formulations and it is unlikely that one can still describe the improvement in the degree of aproximation near $\pm a_{n}$. For those to whom a_{u} is new, its significance lies partly in the identity [12-14]

$$
\begin{equation*}
\|P w\|_{L_{\infty}(-1,1)}=\|P w\|_{L_{\infty}\left(-a_{n}, a_{n}\right)}, \quad P \in \mathscr{P}_{n} \tag{1.7}
\end{equation*}
$$

and the fact that a_{n} is the "smallest" such number.
Note that (1.4) on its own forces $Q^{\prime}(x)$ to grow faster than $\left(1-x^{2}\right)^{-1-\delta}$ near ± 1, for some $\delta>0$, so there is some overlap between it and condition (e) of Definition 1.1. We need (e) only in Section 5, in constructing polynomial approximations to w^{-1}. We could replace (e) by the implicit assumption that there exist polynomials P_{n} of degree $O(n)$ such that

$$
C_{1} \leqslant P_{n}(x) w(x) \leqslant C_{2}, x \in\left[-a_{n}, a_{n}\right] .
$$

In all probability, (a) to (d) of Definition 1.1 already guarantee the existence of such polynomials, and possibly the methods of Totik [19] can be used to verify this.

Our modulus of continuity involves two parts, a "main part" and a "tail." The main part involves r th symmetric differences over the interval $\left[-a_{1 /(2 t)}, a_{1 /(2 t)}\right]$, and the tail involves an error of weighted polynomial approximation over the remainder of $(-1,1)$. For $h>0$, an interval J, and $r \geqslant 1$, we define the r th symmetric difference as

$$
\begin{equation*}
\Delta_{h}^{r}(f, x, J):=\sum_{i=0}^{r}\binom{r}{i}(-1)^{i} f\left(x+\frac{r h}{2}-i h\right), \tag{1.8}
\end{equation*}
$$

provided all arguments of f lie in J, and 0 otherwise. Sometimes the increment h will depend on x and the function

$$
\begin{equation*}
\Phi_{t}(x):=\sqrt{\left|1-\frac{|x|}{a_{1 / t}}\right|}+T\left(a_{1 / t}\right)^{-1 / 2}, \quad x \in(-1,1) . \tag{1.9}
\end{equation*}
$$

This is the case in our modulus of continuity

$$
\begin{align*}
\omega_{r, p}(f, w, t):= & \sup _{0<h \leqslant t}\left\|w \Delta_{h \Phi_{t}(x)}^{r}(f, x,(-1,1))\right\|_{L_{p}\left(|x| \leqslant a_{1 /(2 t)}\right)} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)} \tag{1.10}
\end{align*}
$$

and its averaged cousin

$$
\begin{align*}
& \bar{\omega}_{r, p}(f, w, t):=\left(\frac{1}{t} \int_{0}^{t}\left\|w \Delta_{h \Phi_{t}(x)}^{r}(f, x,(-1,1))\right\|_{L_{p}\left(|x| \leqslant a_{1 /(2 t)}\right.}^{p} d h\right)^{1 / p} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4)} \leqslant|x| \leqslant 1\right)} . \tag{1.11}
\end{align*}
$$

(If $p=\infty, \bar{\omega}_{r, p}:=\omega_{r, p}$). One can think of $h \Phi_{t}(x)$ as a suitable replacement for the factor $h \sqrt{1-x^{2}}$ that appears in the Ditzian-Totik modulus of continuity.

The inf in the tail is at first disconcerting, but note that it is over polynomials of degree at most $r-1$, not n. Its presence ensures that for $f \in \mathscr{P}_{r-1}$, $\omega_{r, p}(f, w, t) \equiv 0$. It also reflects the inability of weighted polynomials $P_{n} w$ to approximate well beyond the interval $\left[-a_{n}, a_{n}\right]$. For classical Jacobi weights, the interval $\left[-a_{n}, a_{n}\right]$ is essentially $\left[-\left(1-n^{-2}\right), 1-n^{-2}\right]$ and the length of the remaining subintervals of $[-1,1]$, namely n^{-2}, is negligible. However, for our weights, a_{n} may be significantly smaller, and the "tail" interval cannot be ignored. For example, for $w_{k, \alpha}$ of (1.5) with $k \geqslant 1$,

$$
1-a_{n} \sim\left(\log _{k} n\right)^{-1 / \alpha}
$$

where $\log _{k}=\log (\log (\cdots(\log (\cdot)))$ denotes the k th iterated logarithm. Here and in the remainder of the article

$$
c_{n} \sim d_{n}
$$

means that there exist $C_{1}, C_{2}>0$ such that

$$
C_{1} \leqslant c_{n} / d_{n} \leqslant C_{2}
$$

for the relevant range of n. Similar notation is used for functions and sequence of functions.

We remark that we could probably replace $a_{1 /(2 t)}$ in the above definition of our moduli of continuity with $a_{1 / t}-C_{1} t / \sqrt{T\left(a_{1 / t}\right)}$, which is somewhat larger, since, as we shall see in Section 2,

$$
a_{1 / t}-a_{1 /(2 t)} \geqslant C_{1} / T\left(a_{1 / t}\right) \gtrdot t / \sqrt{T\left(a_{1 / t}\right)} .
$$

Likewise, we could probably replace $a_{1 /(4 t)}$ in the moduli with the somewhat larger $a_{1 / t}-C_{2} t / \sqrt{T\left(a_{1 / t}\right)}$, with suitably chosen $C_{j}, j=1$, 2. However, the resulting moduli are probably equivalent to those above, and the extra complications and hypotheses on the weight are not worth the effort.

The moduli of continuity are rather difficult to assimilate (as is the case with all their cousins [6] for weighted approximation on \mathbb{R}). A good way to view the modulus is that for purposes of approximation by polynomials of degree at most n, essentially $t=1 / n$, the main part is taken over the range $\left[-a_{n / 2}, a_{n / 2}\right]$, and the tail is taken over $[-1,1] \backslash\left[-a_{n / 4}, a_{n / 4}\right]$. Moreover, the function $\Phi_{t}(x)$ describes the improvement in the degree of approximation in the range $\left\{x: a_{\alpha n} \leqslant|x| \leqslant a_{n / 2}\right\}$, any fixed $\alpha \in\left(0, \frac{1}{2}\right)$, in much the same way that $\sqrt{1-x^{2}}$ does for Jacobi weights on $[-1,1]$. In particular for x over this range, $\Phi_{t}(x) \sim T\left(a_{n}\right)^{-1 / 2} \rightarrow 0, n \rightarrow \infty$.

Our main result is:
Theorem 1.2. Let $w:=e^{-Q} \in \mathscr{E}$. Let $r \geqslant 1$ and $0<p \leqslant \infty$. Then for $f:(-1,1) \rightarrow \mathbb{R}$ for which $f w \in L_{p}(-1,1)$ (and for $p=\infty$, we require f to be continuous and fw to vanish at ± 1), we have for $n \geqslant C_{3}$

$$
\begin{equation*}
E_{n}[f]_{w, p} \leqslant C_{1} \bar{\omega}_{r, p}\left(f, w, \frac{C_{2}}{n}\right) \leqslant C_{1} \omega_{r, p}\left(f, w, \frac{C_{2}}{n}\right), \tag{1.12}
\end{equation*}
$$

where $C_{j}, j=1,2,3$, do not depend on f or n.
We note that the result may be easily extended to hold for $n \geqslant r-1$. For a proof of this for the range $C_{3} \geqslant n \geqslant r-1$ in the related case of Freud weights, see [5]. The proof is exactly the same here.

Unfortunately, the moduli above are not obviously monotone increasing in t, so we also present a result involving the increasing modulus

$$
\begin{align*}
\omega_{r, p}^{*}(f, w, t):= & \sup _{\substack{0<h \leqslant t \\
0<\tau \leqslant L}}\left\|w \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x,(-1,1))\right\|_{L_{p}\left(|x| \leqslant a_{1 /(2 h)}\right)} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(t) \mid} \leqslant|x| \leqslant 1\right)} . \tag{1.13}
\end{align*}
$$

Here L is a (large enough) number independent of f, t.

Theorem 1.3. Under the hypotheses of Theorem 1.2,

$$
\begin{equation*}
E_{n}[f]_{w, p} \leqslant C_{1} \omega_{r, p}^{*}\left(f, w, \frac{C_{2}}{n}\right) \tag{1.14}
\end{equation*}
$$

$n \geqslant C_{3}$, where $C_{j}, j=1,2,3$, do not depend on f or n.
The moduli of continuity will be analyzed in part II of this paper, and in particular the relationship to K-functionals/ realization functionals will be discussed. These have the consequence that we can dispense with the constant C_{2} inside the moduli in (1.12) but this requires extra hypotheses on w, namely, a Markov-Bernstein inequality.

The paper is organised as follows: In Section 2, we present some technical details related to Q, a_{u}, and so on. In Section 3, we present estimates involving differences. In Section 4, we obtain polynomial approximations to w^{-1} over suitable intervals, and then in Section 5, we present our crucial approximations to characteristic functions. We prove Theorem 1.2 in Section 6 and Theorem 1.3 in Section 7. Moreover, we discuss some further simplification of the modulus $\omega_{r, p}^{*}$ in Section 7.

At a first reading, the reader should first read Section 6 and then Sections 4 and 5. The technical Sections 2 and 3 can be read last.

We close this section with a little more notation. Throughout, C, C_{1}, C_{2}, \ldots denote positive constants independent of n, x and $P \in \mathscr{P}_{n}$. The same symbol does not necessarily denote the same constant in different occurrences. We write $C \neq C(L)$ to indicate that C is independent of L. Moreover, when dealing with, for example, $x, y \in(C, 1)$, it is taken as understood that $C<1$. In the sequel, we assume that $w=e^{-Q} \in \mathscr{E}$, except that we shall not use condition (e) of Definition 1.1 unless specified.

2. TECHNICAL LEMMAS

In this section, we shall assume $w \in \mathscr{E}$, except that we shall not use condition (e) of Definition 1.1.

Lemma 2.1. (a) For some $C_{j}, j=1,2,3$, and $s \geqslant r \geqslant C_{3}$,

$$
\begin{equation*}
\left(\frac{s}{r}\right)^{C_{2} T(r)} \leqslant \frac{Q(s)}{Q(r)} \leqslant\left(\frac{s}{r}\right)^{C_{1} T(s)} \tag{2.1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\left(\frac{s}{r}\right)^{C_{2} T(r)} \frac{T(s)}{T(r)} \leqslant \frac{Q^{\prime}(s)}{Q^{\prime}(r)} \leqslant \frac{T(s)}{T(r)}\left(\frac{s}{r}\right)^{C_{1} T(s)} . \tag{2.2}
\end{equation*}
$$

(b) For some $C_{j}, j=1,2,3$ and $x \in\left(C_{1}, 1\right)$,

$$
\begin{align*}
T(x) & \geqslant \frac{C_{2}}{1-x} \tag{2.3}\\
Q^{(j)}(x) & \geqslant \frac{C_{2}}{(1-x)^{C_{3}+j}}, \quad j=0,1 . \tag{2.4}
\end{align*}
$$

(c) Given $\delta>0$, there exists C such that

$$
\begin{equation*}
T(y) \sim T\left(y\left(1-\frac{\delta}{T(y)}\right)\right), \quad y \geqslant C . \tag{2.5}
\end{equation*}
$$

Proof. (a) First, (2.1) follows from the fact that for $s \geqslant r \geqslant C_{3}$,

$$
\log \frac{Q(s)}{Q(r)}=\int_{r}^{s} T(t) d t \sim \int_{r}^{s} \frac{T(t)}{t} d t
$$

and the fact that T is quasi-increasing. Then the identity $Q^{\prime}(u)=T(u) Q(u)$ gives (2.2).
(b) Since Q is increasing, we can assume that $C_{2}>1$ in (1.4). Then writing $C_{2}=1+\delta, \delta>0$, we have

$$
\frac{Q^{\prime}(y)}{Q(y)^{1+\delta}} \leqslant C_{1} \frac{Q^{\prime}(x)}{Q(x)^{1+\delta}}, \quad y \geqslant x \geqslant C_{3} .
$$

Then as $Q(1)=\infty$, we obtain

$$
C_{1} \frac{Q^{\prime}(x)}{Q(x)^{1+\delta}}(1-x) \geqslant \int_{x}^{1} \frac{Q^{\prime}(y)}{Q(y)^{1+\delta}} d y=\frac{1}{\delta Q(x)^{\delta}}
$$

so

$$
T(x)=\frac{Q^{\prime}(x)}{Q(x)} \geqslant \frac{C_{2}}{1-x} .
$$

Integrating yields

$$
Q(x) \geqslant C_{3}(1-x)^{-C_{2}}
$$

and so

$$
Q^{\prime}(x)=Q(x) T(x) \geqslant C_{3}(1-x)^{-1-C_{2}} .
$$

(c) We can reformulate (1.4) as

$$
\frac{T(y)}{T(x)} \leqslant C_{1}\left(\frac{Q(y)}{Q(x)}\right)^{C_{2}-1} .
$$

Hence for $x=y(1-\delta / T(y))$, the quasi-increasing nature of T gives

$$
\begin{aligned}
C_{4} & \leqslant \frac{T(y)}{T(x)} \leqslant C_{1} \quad \exp \quad\left(\left(C_{2}-1\right) \int_{x}^{y} \frac{Q^{\prime}(t)}{Q(t)} d t\right) \\
& =C_{1} \exp \left(\left(C_{2}-1\right) \int_{x}^{y} t \frac{T(t)}{t} d t\right) \leqslant C_{1} \exp \left(C_{5} T(y) \log \frac{y}{x}\right) \leqslant C_{6} .
\end{aligned}
$$

Recall here that $T(y)$ is large for y close to 1 .
Next, some properties of a_{u} :

Lemma 2.2. (a) a_{u} is uniquely defined and continuous for $u \in(0, \infty)$ and is a strictly increasing function of u.
(b) For $u \geqslant C$,

$$
\begin{align*}
& Q^{\prime}\left(a_{u}\right) \sim u T\left(a_{u}\right)^{1 / 2} \tag{2.6}\\
& Q\left(a_{u}\right) \sim u T\left(a_{u}\right)^{-1 / 2} . \tag{2.7}
\end{align*}
$$

(c) Given fixed $\beta>0$, we have for large u,

$$
\begin{equation*}
T\left(a_{\beta u}\right) \sim T\left(a_{u}\right) . \tag{2.8}
\end{equation*}
$$

(d) Given fixed $\alpha>1$,

$$
\begin{equation*}
\frac{a_{\alpha u}}{a_{u}}-1 \sim \frac{1}{T\left(a_{u}\right)} . \tag{2.9}
\end{equation*}
$$

(e) If $\alpha>1$, then for large enough u,

$$
\begin{equation*}
\frac{Q\left(a_{\alpha u}\right)}{Q\left(a_{u}\right)} \geqslant C_{7}>1 . \tag{2.10}
\end{equation*}
$$

(f) For some $C_{j}, j=8,9, \ldots 12, u \geqslant C_{8}$, and $L \geqslant 1$,

$$
\begin{equation*}
\exp \left(C_{12} \frac{\log \left(C_{11} L\right)}{T\left(a_{u}\right)}\right) \geqslant \frac{a_{L u}}{a_{u}} \geqslant 1+C_{10} \frac{\log \left(C_{9} L\right)}{T\left(a_{L u}\right)} . \tag{2.11}
\end{equation*}
$$

(g) If C_{2} is as in (1.4),

$$
\begin{equation*}
T\left(a_{u}\right) \leqslant C_{6} u^{2\left(\left[C_{2}-1\right] /\left[C_{2}+1\right]\right)}=C_{6} u^{2(1-\delta)} \tag{2.12}
\end{equation*}
$$

some $\delta>0$.
Proof. (a) The function $u \rightarrow a_{u}$ is the inverse of the strictly increasing continuous function

$$
a \rightarrow \frac{2}{\pi} \int_{0}^{1} a t Q^{\prime}(a t) \frac{d t}{\sqrt{1-t_{2}}} d t, \quad a \in(0,1)
$$

which has right limit 0 at 0 . (Note that this function is continuous even if Q^{\prime} is not.) We claim also that the function has limit ∞ as $a \rightarrow 1-$. For, if $a, t \geqslant C$, (2.4) gives

$$
Q^{\prime}(a t) \geqslant C_{1}(1-a t)^{-C_{3}-1} .
$$

So the assertion follows and hence a_{u} is defined for all $u \in(0, \infty)$.
(b) For u so large that $T\left(a_{u}\right)>2$, we have

$$
\begin{aligned}
\frac{u}{a_{u} Q^{\prime}\left(a_{u}\right)} & =\frac{2}{\pi}\left[\int_{0}^{1-1 / T\left(a_{u}\right)}+\int_{1-1 / T\left(a_{u}\right)}^{1}\right] \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} \frac{d t}{\sqrt{1-t^{2}}} \\
& \leqslant \frac{2}{\pi} T\left(a_{u}\right)^{1 / 2} \int_{0}^{1-1 / T\left(a_{u}\right)} \frac{a_{u} Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} d t+\frac{2}{\pi} \int_{1-1 / T\left(a_{u}\right)}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
& \leqslant \frac{2}{\pi} T\left(a_{u}\right)^{1 / 2} \frac{Q\left(a_{u}\right)-Q(0)}{a_{u} Q^{\prime}\left(a_{u}\right)}+\frac{4}{\pi} T\left(a_{u}\right)^{-1 / 2} \\
& \leqslant \frac{4}{\pi} T\left(a_{u}\right)^{1 / 2} \frac{Q\left(a_{u}\right)}{a_{u} Q^{\prime}\left(a_{u}\right)}+\frac{4}{\pi} T\left(a_{u}\right)^{-1 / 2} \leqslant \frac{12}{\pi} T\left(a_{u}\right)^{-1 / 2} .
\end{aligned}
$$

Here we also need u so large that $Q\left(a_{u}\right) \geqslant|Q(0)|$ and $a_{u} \geqslant \frac{1}{2}$. So we have

$$
a_{u} Q^{\prime}\left(a_{u}\right) \geqslant \frac{\pi}{12} u T\left(a_{u}\right)^{1 / 2} .
$$

In the other direction, (2.2) gives, for large u,

$$
\begin{aligned}
\frac{u}{a_{u} Q^{\prime}\left(a_{u}\right)} & =\frac{2}{\pi} \int_{0}^{1} \frac{a_{u} t Q^{\prime}\left(a_{u} t\right)}{a_{u} Q^{\prime}\left(a_{u}\right)} \frac{d t}{\sqrt{1-t^{2}}} \\
& \geqslant C_{1} \int_{1 / 2}^{1} \frac{T\left(a_{u} t\right)}{T\left(a_{u}\right)} t^{C_{1} T\left(a_{u}\right)} \frac{d t}{\sqrt{1-t^{2}}} \\
& \geqslant C_{2} \frac{T\left(a_{u}\left(1-\frac{1}{T\left(a_{u}\right)}\right)\right)}{T\left(a_{u}\right)}\left(1-\frac{1}{T\left(a_{u}\right)}\right)^{C_{1} T\left(a_{u}\right)} \int_{1-1 / T\left(a_{u}\right)}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
& \geqslant C_{3} T\left(a_{u}\right)^{-1 / 2} .
\end{aligned}
$$

Here we have used (2.5) and the quasi-monotonicity of T. So we have (2.6). Then (2.7) follows from the definition of T.
(c) We can assume $\beta>1$. Then by (2.7), and quasi-monotonicity of T,

$$
C_{1} \leqslant \frac{T\left(a_{\beta u}\right)}{T\left(a_{u}\right)} \sim\left[\frac{\beta u}{Q\left(a_{\beta u}\right)}\right]^{2} /\left[\frac{u}{Q\left(a_{u}\right)}\right]^{2} \leqslant \beta^{2} .
$$

(d) Now for fixed $\alpha>1$,

$$
\begin{aligned}
\alpha u & =\frac{2}{\pi} \int_{0}^{1} a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \geqslant \frac{2}{\pi} \int_{a_{u} / a_{\alpha u}}^{1} a_{u} Q^{\prime}\left(a_{u}\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \geqslant C_{2} u T\left(a_{u}\right)^{1 / 2}\left(1-\frac{a_{u}}{a_{\alpha u}}\right)^{1 / 2}
\end{aligned}
$$

by (2.6). Hence

$$
1-\frac{a_{u}}{a_{\alpha u}} \leqslant C_{3} / T\left(a_{u}\right) .
$$

In the other direction,

$$
\begin{aligned}
\alpha u & =\frac{2}{\pi}\left[\int_{0}^{a_{u} / a_{\alpha u}}+\int_{a_{u} / a_{\alpha u}}^{1}\right] a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \\
& \leqslant \frac{2}{\pi} \int_{0}^{a_{u} / a_{\alpha u}} a_{\alpha u} t Q^{\prime}\left(a_{\alpha u} t\right) \frac{d t}{\sqrt{1-\left(\frac{a_{\alpha u} t}{a_{u}}\right)^{2}}}+\frac{2}{\pi} a_{\alpha u} Q^{\prime}\left(a_{\alpha u}\right) \int_{a_{u} / a_{\alpha u}}^{1} \frac{d t}{\sqrt{1-t}} \\
& \leqslant \frac{a_{u}}{a_{\alpha u}}\left[\frac{2}{\pi} \int_{0}^{1} a_{u} s Q^{\prime}\left(a_{u} s\right) \frac{d s}{\sqrt{1-s^{2}}}\right]+\frac{4}{\pi} a_{\alpha u} Q^{\prime}\left(a_{\alpha u}\right)\left(1-\frac{a_{u}}{a_{\alpha u}}\right)^{1 / 2} \\
& \leqslant u+C u T\left(a_{u}\right)^{1 / 2}\left(1-\frac{a_{u}}{a_{\alpha u}}\right)^{1 / 2}
\end{aligned}
$$

by (2.6) and (2.8). Then

$$
1-\frac{a_{u}}{a_{\alpha u}} \geqslant\left(\frac{\alpha-1}{C}\right)^{2} \frac{1}{T\left(a_{u}\right)} .
$$

(e) For large enough u,

$$
\begin{aligned}
& \frac{Q\left(a_{\alpha u}\right)}{Q\left(a_{u}\right)}=\exp \left(\int_{a_{u}}^{a_{u u}} t \frac{T(t)}{t} d t\right) \\
& \geqslant \exp \left(C_{6} T\left(a_{u}\right) \log \left(\frac{a_{\alpha u}}{a_{u}}\right)\right) \geqslant \exp \left(C_{7}\right)>1,
\end{aligned}
$$

by (d) of this lemma.
(f) From (1.4) with $y=a_{L u}$ and $x=a_{u}$,

$$
\begin{equation*}
\frac{T\left(a_{L u}\right)}{T\left(a_{u}\right)} \leqslant C\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{C_{2}-1} \tag{2.13}
\end{equation*}
$$

This forces $C_{2}>1$, as the left-hand side $\rightarrow \infty$ as $L \rightarrow \infty$. Then with the constants in \sim independent of L, (2.7) gives

$$
\begin{align*}
\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)} & \sim \frac{L u T\left(a_{L u}\right)^{-1 / 2}}{u T\left(a_{u}\right)^{-1 / 2}} \\
& \geqslant C L\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{-\left(C_{2}-1\right) / 2} \tag{2.13}\\
& \Rightarrow \frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)} \geqslant C L^{2 /\left(1+C_{2}\right)}
\end{align*}
$$

Then using (2.1),

$$
\left(\frac{a_{L u}}{a_{u}}\right)^{C_{1} T\left(a_{L u}\right)} \geqslant C L^{2 /\left(1+C_{2}\right)}
$$

and the right inequality in (2.11) follows if we use $u-1 \geqslant \log u, u \geqslant 1$. In the other direction, (2.1) and then (2.7) give

$$
\begin{aligned}
\frac{a_{L u}}{a_{u}} & \leqslant\left(\frac{Q\left(a_{L u}\right)}{Q\left(a_{u}\right)}\right)^{1 /\left(C_{2} T\left(a_{u}\right)\right)} \\
& \leqslant\left(C_{1} \frac{L u T\left(a_{L u}\right)^{-1 / 2}}{u T\left(a_{u}\right)^{-1 / 2}}\right)^{1 /\left(C_{2} T\left(a_{u}\right)\right)} \leqslant\left(C_{3} L\right)^{1 /\left(C_{2} T\left(a_{u}\right)\right)} .
\end{aligned}
$$

Here the constants are independent of L and u. Then the left inequality in (2.11) follows.
(g) We apply (1.4) with $y=a_{u}$ and $x=C_{3}$, so that

$$
\begin{aligned}
Q^{\prime}\left(a_{u}\right) & \leqslant C_{4} Q\left(a_{u}\right)^{C_{2}} \\
& \Rightarrow u T\left(a_{u}\right)^{1 / 2} \leqslant C_{5}\left(u T\left(a_{u}\right)^{-1 / 2}\right)^{C_{2}} .
\end{aligned}
$$

Rearranging this gives (2.12).
We finish this section with an infinite finite-range inequality: We provide a proof, as those in the literature $[8,10,12-14,18]$ do not quite match our needs/hypotheses:

Lemma 2.3. Let $0<p \leqslant \infty, s>1$. Then for some $C_{1}, C_{2}>0, n \geqslant 1$, and $P \in \mathscr{P}_{n}$,

$$
\begin{equation*}
\|P w\|_{L_{p}(-1,1)} \leqslant C_{1}\|P w\|_{L_{p}\left(-a_{s i}, a_{s i}\right)} \tag{2.14}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\|P w\|_{L_{p}\left(|x| \geqslant a_{s n}\right)} \leqslant C_{1} e^{-C_{2} n T\left(a_{n}\right)^{-1 / 2}}\|P w\|_{L_{p}\left(-a_{s n}, a_{s n}\right)} . \tag{2.15}
\end{equation*}
$$

Remark. Note that (2.12) shows that for some $C_{3}>0$, and large enough n,

$$
n T\left(a_{n}\right)^{-1 / 2} \geqslant n^{C_{3}}
$$

Proof. We may change Q in a closed subinterval of $(-1,1)$ without affecting (2.14), (2.15) apart from increasing the constants. Note too that the affect on a_{u} is marginal and is absorbed into the fact that $s>1$. Thus we may assume that Q^{\prime} is continuous in $(-1,1)$. This and the strict
monotonicity of $t Q^{\prime}(t)$ in $(0,1)$ allow us to apply existing sup-norm inequalities to deduce that for $P \in \mathscr{P}_{n}$,

$$
\|P w\|_{L_{\infty}(-1,1)} \leqslant C\|P w\|_{L_{\infty}\left[-a_{n}, a_{n}\right]} .
$$

For a precise reference, see [8, Theorem 4.5], for example. Moreover, the proof of Lemma 6.1 in [10, pp. 57-58] gives without change

$$
\begin{equation*}
|P w|^{p}\left(a_{n} x\right) \leqslant \frac{1}{\pi} \frac{2 x}{x-1} \int_{-1}^{1}|P w|^{p}\left(a_{n} t\right) d t, \quad x \in\left(1,1 / a_{n}\right) . \tag{2.16}
\end{equation*}
$$

Let $\langle x\rangle$ denote the greatest integer $\leqslant x$. Let δ be small and positive, let $l:=\langle\delta n\rangle$ and let $T_{l}(x)$ denote the Chebyshev polynomial of degree l. Using the identity

$$
\begin{equation*}
T_{l}(x)=\frac{1}{2}\left[\left(x+\sqrt{x^{2}-1}\right)^{l}+\left(x-\sqrt{x^{2}-1}\right)^{l}\right], \quad x>1 \tag{2.17}
\end{equation*}
$$

it is not difficult to see that

$$
\begin{equation*}
T_{l}(x) \geqslant \frac{1}{2} \exp \left(\frac{l}{\sqrt{2}} \sqrt{x-1}\right), \quad x \in\left(1, \frac{9}{8}\right) \tag{2.18}
\end{equation*}
$$

We now let $m:=n+l=n+\langle\delta n\rangle, m^{\prime}:=n+2 l=n+2\langle\delta n\rangle$ and apply (2.16) to $P(x) T_{l}\left(x / a_{m}\right) \in \mathscr{P}_{m}$. We obtain for $x>1$,

$$
|P w|^{p}\left(a_{m} x\right) \leqslant T_{l}(x)^{-p} \frac{1}{\pi} \frac{2 x}{x-1} \int_{-1}^{1}|P w|^{p}\left(a_{m} t\right) d t .
$$

Replacing $a_{m} x$ by y and integrating from $a_{m^{\prime}}$ to 1 gives

$$
\int_{a_{m^{\prime}}}^{1}|P w|^{p}(y) d y \leqslant\left(\int_{-a_{m}}^{a_{m}}|P w|^{p}(s) d s\right)\left(\frac{2}{\pi} \int_{a_{m^{\prime}}}^{1} \frac{y}{y-a_{m}} T_{l}\left(\frac{y}{a_{m}}\right)^{-p} \frac{d y}{a_{m}}\right) .
$$

Here using (2.18),

$$
\begin{aligned}
\int_{a_{m^{\prime}}}^{1} \frac{y}{y-a_{m}} T_{l}\left(\frac{y}{a_{m}}\right)^{-p} \frac{d y}{a_{m}} & =\int_{a_{m^{\prime}} / a_{m}}^{1 / a_{m}} \frac{x}{x-1} T_{l}(x)^{-p} d x \\
& \leqslant C\left(\int_{a_{m^{\prime}} / a_{m}}^{9 / 8} \frac{1}{x-1} \exp \left(-\frac{l p}{\sqrt{2}} \sqrt{x-1}\right) d x\right) \\
& \leqslant C_{1} \log \left(\frac{9 / 8}{a_{m^{\prime}} / a_{m}-1}\right) \exp \left(-C_{2} l\left(\frac{a_{m^{\prime}}}{a_{m}}-1\right)^{1 / 2}\right) \\
& \leqslant C_{3} \exp \left(-C_{4} n T\left(a_{n}\right)^{-1 / 2}\right)
\end{aligned}
$$

Here we have used (2.9) and our choice of l. Now if δ is small enough, $m^{\prime} \leqslant s n$. Then (2.15) follows easily and in turn yields (2.14).

3. TECHNICAL LEMMAS ON Φ_{t}

In this section, we present various estimates involving the function $\Phi_{t}(x)$. Throughout, we assume that $w=e^{-Q} \in \mathscr{E}$, except that we do not assume (e) of Definition 1.1. Our first lemma concerns the function

$$
\Phi_{t}(x)=\sqrt{\left\lvert\, 1-\frac{|x|}{a_{1 / t} \mid}\right.}+T\left(a_{1 / t}\right)^{-1 / 2}, \quad x>0 .
$$

Lemma 3.1. (a) There exist C_{1}, C_{2} independent of s, t, x, such that for $0<t<s \leqslant C_{1}$,

$$
\begin{equation*}
\Phi_{s}(x) \leqslant C_{2} \Phi_{t}(x), \quad|x| \leqslant a_{1 / s} . \tag{3.1}
\end{equation*}
$$

(b) There exists C_{1} such that for $0<s \leqslant C_{1}$ and $s / 2 \leqslant t \leqslant s$,

$$
\begin{equation*}
\Phi_{s}(x) \sim \Phi_{t}(x), \quad|x|<1 . \tag{3.2}
\end{equation*}
$$

Proof. (a) Let $\delta>0$ be fixed. First for

$$
|x| \leqslant a_{1 / s}\left(1-\delta / T\left(a_{1 / s}\right)\right) \Leftrightarrow 1-|x| / a_{1 / s} \geqslant \delta / T\left(a_{1 / s}\right)
$$

we have

$$
\Phi_{s}(x) \sim \sqrt{1-\frac{|x|}{a_{1 / s}}} \leqslant \sqrt{1-\frac{|x|}{a_{1 / t}}} \leqslant \Phi_{t}(x) .
$$

Next, for

$$
a_{1 / s}\left(1-\delta / T\left(a_{1 / s}\right)\right) \leqslant|x| \leqslant a_{1 / s} \Rightarrow 1-|x| / a_{1 / s} \leqslant \delta / T\left(a_{1 / s}\right)
$$

we have

$$
\Phi_{s}(x) \sim T\left(a_{1 / s}\right)^{-1 / 2} .
$$

This is bounded by $C \Phi_{t}(x)$ if $\left|1-|x| / a_{1 / t}\right| \geqslant \delta / T\left(a_{1 / s}\right)$, for a fixed $\delta>0$. Otherwise, we have $\left|1-|x| / a_{1 / s}\right| \leqslant \delta / T\left(a_{1 / s}\right)$ and $\left|1-|x| / a_{1 / t}\right| \leqslant \delta / T\left(a_{1 / s}\right)$, so

$$
\begin{aligned}
\left|1-\frac{a_{1 / t}}{a_{1 / s}}\right| & =\left|\left(1-\frac{|x|}{a_{1 / s}}\right)-\frac{|x|}{a_{1 / s}}\left(\frac{a_{1 / t}}{|x|}-1\right)\right| \\
& \leqslant C_{1} \delta / T\left(a_{1 / s}\right)
\end{aligned}
$$

If δ is small enough, we deduce from (2.9) and (2.8) that

$$
T\left(a_{1 / t}\right) \sim T\left(a_{1 / s}\right)
$$

so

$$
\Phi_{s}(x) \sim T\left(a_{1 / s}\right)^{-1 / 2} \sim T\left(a_{1 / t}\right)^{-1 / 2} \sim \Phi_{t}(x)
$$

and again (3.1) follows.
(b) Now

$$
\begin{aligned}
\left|1-\frac{|x|}{a_{1 / t}}\right| & =\left|1-\frac{|x|}{a_{1 / s}}+\frac{|x|}{a_{1 / s}}\left(1-\frac{a_{1 / s}}{a_{1 / t}}\right)\right| \\
& \leqslant\left|1-\frac{|x|}{a_{1 / s}}\right|+O\left(\frac{1}{T\left(a_{1 / s}\right)}\right) .
\end{aligned}
$$

Then we obtain for $|x|<1$

$$
\Phi_{t}(x) \leqslant C \Phi_{s}(x) .
$$

The converse direction is similar.
Lemma 3.2. (a) Let $L>0$. Uniformly for $u \geqslant 1$, and $|x|,|y| \leqslant a_{u}$, such that

$$
\begin{equation*}
|x-y| \leqslant \frac{L}{u} \sqrt{\left|1-\frac{|y|}{a_{u} \mid}\right|} \tag{3.3}
\end{equation*}
$$

we have

$$
\begin{equation*}
w(x) \sim w(y) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{|x|}{a_{2 u}} \sim 1-\frac{|y|}{a_{2 u}} . \tag{3.5}
\end{equation*}
$$

(b) Let $L>0$. For $t \in\left(0, t_{0}\right),|x|,|y| \leqslant a_{1 /(L t)}$ such that

$$
\begin{equation*}
|x-y| \leqslant \operatorname{Lt} \Phi_{t}(x) \tag{3.6}
\end{equation*}
$$

we have (3.4) and

$$
\begin{equation*}
\Phi_{t}(x) \sim \Phi_{t}(y) \tag{3.7}
\end{equation*}
$$

Proof. (a) It suffices to prove (3.4), (3.5) for large u. Moreover, (3.4) and (3.5) are immediate for $|x| \leqslant C<1$ and large u. Let us suppose that $C \leqslant x \leqslant y \leqslant x+(L / u) \sqrt{\left|1-|y| / a_{u}\right|}$. Then as $Q^{\prime}(s)$ is quasi-increasing for s close to 1 ,

$$
0 \leqslant Q(y)-Q(x) \leqslant C_{1} Q^{\prime}(y)(y-x)
$$

We have then (3.4) for

$$
\begin{equation*}
Q^{\prime}(y)(y-x)=O(1) \tag{3.8}
\end{equation*}
$$

We shall show that

$$
\begin{equation*}
Q^{\prime}(y) \sqrt{\left|1-\frac{y}{a_{u}}\right|} \leqslant C_{2} u \tag{3.9}
\end{equation*}
$$

so that (3.3) implies (3.8) and hence (3.4). If first, $0<y \leqslant a_{u} / 2$, then

$$
\begin{aligned}
Q^{\prime}(y) \sqrt{\left|1-\frac{y}{a_{u}}\right|} & \leqslant C_{3} Q^{\prime}(y) \leqslant C_{4} a_{u} Q^{\prime}(y) \int_{1 / 2}^{1} \frac{d t}{\sqrt{1-t^{2}}} \\
& \leqslant C_{5} \int_{1 / 2}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \leqslant C_{6} u
\end{aligned}
$$

If, on the other hand, $a_{u} / 2 \leqslant y \leqslant a_{u}$,

$$
Q^{\prime}(y) \sqrt{\left|1-\frac{y}{a_{u}}\right|} \leqslant C_{7} \int_{y / a_{u}}^{1} a_{u} t Q^{\prime}\left(a_{u} t\right) \frac{d t}{\sqrt{1-t^{2}}} \leqslant C_{8} u .
$$

So we have (3.9) in all cases and hence (3.4). We proceed to prove (3.5). Now from (3.3) and as $y \leqslant a_{u}$,

$$
\begin{aligned}
1 & \leqslant \frac{1-x / a_{2 u}}{1-y / a_{2 u}}=1+\frac{y-x}{a_{2 u}\left(1-y / a_{2 u}\right)}=1+O\left(\frac{1}{u \sqrt{1-y / a_{2 u}}}\right) \\
& =1+O\left(\frac{1}{u \sqrt{1-a_{u} / a_{2 u}}}\right)=1+O\left(\frac{T\left(a_{u}\right)^{1 / 2}}{u}\right)=1+o(1),
\end{aligned}
$$

by (2.9) and (2.12).
(b) Write $L t=1 / u$, so that $|x|,|y| \leqslant a_{1 /(L t)}=a_{u}$, and we can recast (3.6) as

$$
|x-y| \leqslant C_{1} \frac{1}{u}\left[\sqrt{1-\frac{|x|}{a_{u}}}+T\left(a_{u}\right)^{-1 / 2}\right] \leqslant C_{2} \frac{1}{2 u} \sqrt{1-\frac{|x|}{a_{2 u}}}
$$

by (2.8), (2.9), and (3.2). Then (a) gives (3.4), and (3.7) follows easily from (3.5).

4. POLYNOMIAL APPROXIMATION OF w^{-1}

The result of this section is:
Theorem 4.1. Assume $w=e^{-Q} \in \mathscr{E}$. For $n \geqslant 1$, there exist polynomials G_{n} of degree at most C_{n}, such that

$$
\begin{equation*}
0 \leqslant G_{n}(x) \leqslant w^{-1}(x), x \in(-1,1) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}(x) \sim w^{-1}(x),|x| \leqslant a_{n} \tag{4.2}
\end{equation*}
$$

We remark that this does not follow from existing results in the literature on approximation by weighted polynomials of the form $P_{n}(x) w\left(a_{n} x\right)$ [19] as our weights do not satisfy their hypotheses. The methods of Totik [19] can be applied to give sharper results but we base our proof on a method involving entire functions. It is only in the following result that we need condition (e) of Definition 1.1.

Lemma 4.2. There exists an even function

$$
\begin{equation*}
G(z)=\sum_{j=0}^{\infty} g_{j} z^{2 j}, \quad g_{j} \geqslant 0 \forall j, \tag{4.3}
\end{equation*}
$$

analytic in $\{z:|z| \leqslant 1\}$, such that

$$
\begin{equation*}
G(x) \sim w^{-1}(x), \quad x \in(-1,1) \tag{4.4}
\end{equation*}
$$

Proof. This is different from that in [10, p. 107ff] because of the different hypotheses on Q, so we include the details. Consider the transformation

$$
x:=x(r):=\sqrt{\frac{r}{r+1}}, r \in(0, \infty) .
$$

This is equivalent to

$$
r=\frac{x^{2}}{1-x^{2}}, \quad x \in(0,1) .
$$

Set

$$
Q_{1}(r):=Q(x(r))=Q\left(\sqrt{\frac{r}{r+1}}\right), \quad r \in(0, \infty) .
$$

We shall apply a theorem of Clunie-Kövari [1] to

$$
\phi(r):=e^{Q_{1}(r)} .
$$

Straightforward calculations show that

$$
x^{\prime}(r)=\frac{1}{2 x(r)(r+1)^{2}}
$$

and

$$
Q_{1}^{\prime}(r)=\frac{Q^{\prime}(x(r))}{2 x(r)(r+1)^{2}} .
$$

Next,

$$
r+1=\frac{1}{1-x(r)^{2}},
$$

so if δ is as in Definition 1.1(e),

$$
(r+1)^{1-\delta} Q_{1}^{\prime}(r)=(r+1)^{-1-\delta} \frac{Q^{\prime}(x(r))}{2 x(r)}=\left(1-x(r)^{2}\right)^{1+\delta} \frac{Q^{\prime}(x(r))}{2 x(r)}
$$

is quasi-increasing for large r. Now set

$$
\psi(r):=r Q_{1}^{\prime}(r) .
$$

By the quasi-increasing nature of $r^{1-\delta} Q_{1}^{\prime}(r)$, we have for large enough λ and some C independent of λ,

$$
\begin{aligned}
\psi(\lambda r)-\psi(r) & =\left\{(\lambda r)^{\delta}(\lambda r)^{1-\delta} Q_{1}^{\prime}(\lambda r)-r Q_{1}^{\prime}(r)\right\} \\
& \geqslant r^{1-\delta} Q_{1}^{\prime}(r)\left\{(\lambda r)^{\delta} C-r^{\delta}\right\} \geqslant 1
\end{aligned}
$$

if λ is large enough, and $r \geqslant r_{0}$. Moreover,

$$
\psi(r)=\frac{r Q^{\prime}(x(r))}{2 x(r)(r+1)^{2}}=\frac{x(r) Q^{\prime}(x(r))}{2(r+1)}=\frac{x(r)}{2} Q^{\prime}(x(r))\left(1-x(r)^{2}\right)
$$

is increasing in r for large r, since $x(r)$ and $Q^{\prime}(x(r))\left(1-x(r)^{2}\right)$ are. Moreover, $\phi(r):=e^{Q_{1}(r)}$ admits the representation

$$
\phi(r)=\phi(1) \exp \left(\int_{1}^{r} \frac{\psi(s)}{s} d s\right), \quad r \geqslant 1 .
$$

By a theorem of Clunie and Kövari [1, Theorem 4, p. 19], there exists entire

$$
H(r)=\sum_{j=0}^{\infty} h_{j} r^{j}, \quad h_{j} \geqslant 0 \forall j
$$

such that

$$
H(r) \sim \phi(r)=\exp \left(Q\left(\sqrt{\frac{r}{r+1}}\right)\right), \quad r>r_{0}
$$

Then assuming $h_{0}>0$ as we can, we see that this holds for $r \geqslant 0$. Then

$$
G(x):=H\left(\frac{x^{2}}{1-x^{2}}\right)=H(r) \sim \exp \left(Q\left(\sqrt{\frac{r}{r+1}}\right)\right)=\exp (Q(x))
$$

satisfies (4.4) and as

$$
G(x)=H\left(\sum_{j=1}^{\infty} x^{2 j}\right)
$$

we also obtain (4.3).
Proof of Theorem 4.1. Let J be a positive even integer (to be chosen large enough later) and let $T_{n}(x)$ denote the classical Chebyshev polynomial on $[-1,1]$. Let G_{n} denote the Lagrange interpolant to G at the zeros of $T_{n}\left(x / a_{n}\right)^{J}$ so that G_{n} has degree at most $J n-1$ and admits the error representation

$$
\left(G-G_{n}\right)(x)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{G(t)}{t-x}\left(\frac{T_{n}\left(x / a_{n}\right)}{T_{n}\left(t / a_{n}\right)}\right)^{J} d t
$$

for x inside Γ. We shall choose Γ to be the ellipse with foci at $\pm a_{n}$, intersecting the real and imaginary axes at $\left(a_{n} / 2\right)\left(\rho+\rho^{-1}\right)$ and $\left(a_{n} / 2\right)\left(\rho-\rho^{-1}\right)$, respectively. Here we shall choose for some fixed small $\varepsilon>0$,

$$
\rho:=1+\left(\frac{\varepsilon}{T\left(a_{n}\right)}\right)^{1 / 2} .
$$

Since G has non-negative Maclaurin series coefficients and satisfies (4.4), we deduce that

$$
\delta_{n}:=\left\|1-G_{n} / G\right\|_{L_{\infty}\left[-a_{n}, a_{n}\right]} \leqslant C_{1} \frac{w^{-1}\left(\left(a_{n} / 2\right)\left(\rho+\rho^{-1}\right)\right)}{(\rho-1)^{2}} \frac{1}{\min _{t \in \Gamma}\left|T_{n}\left(t / a_{n}\right)\right|^{J}} .
$$

Now for $t \in \Gamma$, we can write $t=\left(a_{n} / 2\right)\left(z+z^{-1}\right)$, where $|z|=\rho$, so that

$$
\begin{aligned}
\left|T_{n}\left(t / a_{n}\right)\right| & =\left|T_{n}\left(\frac{1}{2}\left(z+z^{-1}\right)\right)=\left|\frac{1}{2}\left(z^{n}+z^{-n}\right)\right|\right. \\
& \geqslant \frac{1}{2}\left(\rho^{n}-\rho^{-n}\right) \geqslant \exp \left(C_{2} n T\left(a_{n}\right)^{-1 / 2}\right) .
\end{aligned}
$$

(Recall that $n T\left(a_{n}\right)^{-1 / 2} \rightarrow \infty$ as $n \rightarrow \infty$ and in fact grows faster than a power of n). It is important here that C_{2} is independent of J. Next

$$
\frac{a_{n}}{2}\left(\rho+\rho^{-1}\right) \leqslant a_{n}\left(1+C_{3} \frac{\varepsilon}{T\left(a_{n}\right)}\right) \leqslant a_{2 n}
$$

if ε is small enough, and n is large enough, by (2.9). Then

$$
w^{-1}\left(\frac{a_{n}}{2}\left(\rho+\rho^{-1}\right)\right) \leqslant w^{-1}\left(a_{2 n}\right) \leqslant \exp \left(C_{4} n T\left(a_{n}\right)^{-1 / 2}\right),
$$

where again it is important that C_{4} is independent of J. Since $(\rho-1)^{-2} \sim T\left(a_{n}\right)$ grows no faster than a power of n, we see that choosing J large enough gives

$$
\delta_{n} \leqslant C T\left(a_{n}\right) \exp \left(n T\left(a_{n}\right)^{-1 / 2}\left(C_{4}-C_{2} J\right)\right) \rightarrow 0, \quad n \rightarrow \infty .
$$

Then (4.4) gives (4.2).
We now turn to proving (4.1). It suffices to prove

$$
0 \leqslant G_{n} \leqslant C w^{-1}
$$

for then (4.1) follows on multiplying G_{n} by a suitable constant (and (4.2) is still valid)). First, we can assume n is even (for odd n, we can use G_{n+1}) so that $H_{n}(x):=G_{n}(\sqrt{x})$ is a polynomial of degree at most $J n / 2-1$ (recall that T_{n} and J are even) that interpolates to the function $H(x):=G(\sqrt{x})$, which is analytic in $(-1,1)$, at the $J n / 2$ zeros of $T_{n}\left(\sqrt{t} / a_{n}\right)^{J}$ that lie in $\left(0, a_{n}^{2}\right)$. Thus $H_{n}(x)$ is determined entirely by interpolation conditions. Let γ_{n} denote the leading coefficient of $T_{n}\left(x / \sqrt{a_{n}}\right)$. Then the usual derivativeerror formula for Hermite interpolation gives for $x \in(0, \infty)$ and some $\xi \in(0,1)$

$$
\left(H-H_{n}\right)(x)=\gamma_{n}^{-J} T_{n}\left(\frac{\sqrt{x}}{a_{n}}\right)^{J} \frac{H^{(J n / 2)}(\xi)}{(J n / 2)!} \geqslant 0 .
$$

(Recall that H is analytic and has non-negative Maclaurin series coefficients.) So in $(-1,1)$,

$$
G_{n} \leqslant G \leqslant C w^{-1} .
$$

To show that $G_{n} \geqslant 0$ in $(-1,1)$, we note that it is true in $\left[-a_{n}, a_{n}\right]$ (this follows from (4.2)) and we must establish it elsewhere. We use a zero counting lemma used to prove the Posse-Markov-Stieltjes inequalities [7, p. 30, Lemma 5.3] (there the proof is for $(-\infty, \infty)$, but the proof goes through for $(0,1)$ with trivial changes). Now H is absolutely monotone in $(0,1)$ and $H-H_{n}$ has $J n / 2$ zeros in $\left(0, a_{n}^{2}\right]$. If m is the number of zeroes of $H_{n}(x)$ in [$a_{n}^{2}, 1$), Lemma 5.3 in [7, p. 30] gives

$$
\frac{J n}{2}+m \leqslant \operatorname{deg}\left(H_{n}\right)+1 \leqslant \frac{J n}{2}
$$

So $m=0$, that is, H_{n} has no zeros in $\left(a_{n}^{2}, 1\right)$. Thus $H_{n} \geqslant 0$ there, so $G_{n} \geqslant 0$ in $(-1,1)$.

5. POLYNOMIALS APPROXIMATING CHARACTERISTIC FUNCTIONS

Our Jackson theorem is based on polynomial approximations to the characteristic function $\chi_{[a, b]}$ of an interval $[a, b]$. We believe the following result is of independent interest:

Theorem 5.1. Let l be a positive integer. There exist C_{1}, J, n_{0} such that for $n \geqslant n_{0}$ and $\tau \in\left[-a_{n}, a_{n}\right]$, there exist polynomials $R_{n, \tau}$ of degree at most 2lJn such that for $x \in(-1,1)$,

$$
\begin{equation*}
\left|\chi_{\left[\tau, a_{n}\right]}-R_{n, \tau}\right|(x) w(x) / w(\tau) \leqslant C_{1}\left(1+\frac{n|x-\tau|}{\sqrt{1-|\tau| / a_{2 n}}}\right)^{-l} . \tag{5.1}
\end{equation*}
$$

We emphasise that the constants are independent of n, τ, x. Our proof will use polynomials from [9] built on the Chebyshev polynomials:

Lemma 5.2. There exist C_{1}, B, n_{1}, such that for $n \geqslant n_{1}$ and $|\zeta| \leqslant \cos \pi / 2 n$, there exists a polynomial $V_{n, \zeta}$ of degree at most $n-1$ with

$$
\begin{align*}
\left\|V_{n, \zeta}\right\|_{L_{\infty}[-1,1]} & =V_{n, \zeta}(\zeta)=1 ; \tag{5.2}\\
\left|V_{n, \zeta}(t)\right| & \leqslant \frac{B \sqrt{1-|\zeta|}}{n|t-\zeta|}, \quad t \in(-1,1) \backslash\{\zeta\} . \tag{5.3}
\end{align*}
$$

Moreover,

$$
\begin{equation*}
V_{n, \zeta}(t) \geqslant \frac{1}{2},|t-\zeta| \leqslant C_{1} \frac{\sqrt{1-|\zeta|}}{n} . \tag{5.4}
\end{equation*}
$$

The constants are independent of n, ζ, t.
Proof. The assertions (5.2), (5.3) are Proposition 13.1 in [9]. The estimate (5.4) follows from the classical Bernstein inequality.

The polynomials $R_{n, \tau}$ are determined as follows: Let us suppose that, say,

$$
a_{1} \leqslant \tau \leqslant a_{n} .
$$

Later on, we shall suppose that τ exceeds a fixed positive constant. We define

$$
\begin{equation*}
\zeta:=\frac{\tau}{a_{2 l J_{n}}} \tag{5.5}
\end{equation*}
$$

and if G_{n} are the polynomials of Theorem 4.1,

$$
\begin{equation*}
R_{n, \tau}(x):=\frac{\int_{0}^{x} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{\int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} . \tag{5.6}
\end{equation*}
$$

The parameter $\tau^{*}>\tau$ and J are defined as follows: Let M denote a positive constant such that for, say, $u \geqslant u_{0}$,

$$
\begin{equation*}
Q^{\prime}(x) \leqslant M Q^{\prime}\left(a_{u}\right), \quad \frac{1}{2} \leqslant x \leqslant a_{2 u} . \tag{5.7}
\end{equation*}
$$

The existence of such an M follows from (2.6), (2.8). We set

$$
\begin{equation*}
H:=H(n, \tau, l):=\frac{4 \ln }{a_{n} Q^{\prime}(\tau) \sqrt{1-\zeta}} \tag{5.8}
\end{equation*}
$$

and if $\tau=a_{r}$,

$$
\begin{equation*}
\tau^{*}:=\tau^{*}(n, \tau):=\min \left\{a_{2 r}, a_{n}, \tau+2 \frac{a_{n}}{n} \sqrt{1-\zeta} H \log H\right\} . \tag{5.9}
\end{equation*}
$$

The reason for this (complicated!) choice will become clearer later. We assume that $J \geqslant 4$ is so large that G_{n} has degree at most $J n-1$, and also

$$
\begin{equation*}
J \geqslant 32 M \tag{5.10}
\end{equation*}
$$

where M is as above. Note that then $R_{n, \tau}$ has degree at most $J n+l J n \leqslant$ 2lJn. We first record some estimates of the terms in (5.6):

Lemma 5.3. (a) For $n \geqslant n_{1}$, and $C_{1} \leqslant \tau \leqslant a_{n}$, we have

$$
\begin{equation*}
w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(\frac{s}{a_{2 l J_{n}}}\right)^{l J} d s \geqslant \frac{C_{2}}{n} \sqrt{1-\zeta}, \tag{5.11}
\end{equation*}
$$

where $C_{2} \neq C_{2}(n, \tau)$.
(b) For $x \in\left(\tau, a_{2 I J_{n}}\right)$,

$$
\begin{equation*}
\int_{x}^{a_{2 l / J n}} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J / 2} d s \leqslant \frac{C_{1}}{n} \sqrt{1-\zeta}\left(1+\frac{n|x-\tau|}{\sqrt{1-\zeta}}\right)^{-l} \tag{5.12}
\end{equation*}
$$

and for $x \in\left(-a_{2 l J n}, \tau\right)$,

$$
\begin{equation*}
\int_{-a_{2 l J n}}^{x} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{I J / 2} d s \leqslant \frac{C_{1}}{n} \sqrt{1-\zeta}\left(1+\frac{n|x-\tau|}{\sqrt{1-\zeta}}\right)^{-l} . \tag{5.13}
\end{equation*}
$$

Here $C_{1} \neq C_{1}(n, \tau)$.
Proof. (a) Let us denote the left-hand side of (5.11) by Γ. By (4.2) and (5.4),

$$
\Gamma \geqslant C_{2} w(\tau) \int_{\tau-\left(C_{3} / n\right) \sqrt{1-\zeta}}^{\tau} w^{-1}(s) d s \geqslant \frac{C_{4}}{n} \sqrt{1-\zeta}
$$

where we have used (3.4) of Lemma 3.2(a).
(b) These follow in a straightforward fashion from the estimates (5.2), (5.3) and the fact that $J \geqslant 4$.

Now we begin the proof of Theorem 5.1. We first show that it suffices to consider τ in the range [S, a_{n}] for some fixed $S<1$.

Proof of Theorem 5.1 for $|\tau| \leqslant S$, where $S<1$ is fixed. Note first that since for such τ,

$$
w(x) / w(\tau) \leqslant w(0) / w(S), \quad x \in(-1,1)
$$

we must only prove there exists $R_{n, \tau}$ of degree at most n such that

$$
\left|\chi_{\left[\tau, a_{n}\right]}-R_{n, \tau}\right|(x) \leqslant C_{1}\left(1+\frac{n|x-\tau|}{\sqrt{1-\frac{|\tau|}{a_{2 n}}}}\right)^{-l},
$$

for $|x| \leqslant 1$. Setting here $\xi:=\tau / a_{n}$, and $s:=x / a_{n}$, and $U_{n, \xi}(s):=R_{n, \tau}(x)=$ $R_{n, \tau}\left(a_{n} s\right)$, we see that it suffices to show that

$$
\left|\chi_{[\xi, 1]}(s)-U_{n, \xi}(s)\right| \leqslant C_{2}(1+n|s-\xi|)^{-l}, \quad s \in[-2,2] .
$$

We have used here that $|\xi| \leqslant C<1$, for large n. The existence of such polynomials is classical. See for example [4]. One could also base them on the $V_{n, \zeta}$ above.

It suffices to consider $\tau \in\left[S, a_{n}\right]$, where S is fixed. For, once this is done, we have the result for all $\tau \in\left[0, a_{n}\right]$. With the result for $\tau \geqslant 0$, we set

$$
R_{n,-\tau}(x):=1-R_{n, \tau}(-x), \quad x \in(-1,1) .
$$

It is not difficult to check the result for $-\tau$ from the corresponding result for τ, using the identity

$$
\chi_{\left[-\tau, a_{n}\right]}(x)=1-\chi_{\left(\tau, a_{n}\right]}(-x) .
$$

In the sequel, we define $R_{n, \tau}$ by (5.6)-(5.10).
It suffices to prove (5.1) for $\tau \in\left[S, a_{n}\right]$ and $|x| \leqslant a_{2 \mid J n}$. For then (5.1) for this restricted range implies

$$
\left\|\left(1+\left[\frac{n(x-\tau)}{\sqrt{1-\tau / a_{2 n}}}\right]^{2}\right)^{\prime} R_{n, \tau}(x) \frac{w(x)}{w(\tau)}\right\|_{L_{\infty}\left[-a_{2 I J n}, a_{2 I J n}\right]} \leqslant C_{3} n^{C_{4}},
$$

where $C_{4} \neq C_{4}(n, \tau)$. Since the polynomial on the left-hand side has degree at most $2 l+J n+l J n \leqslant \eta 2 l J n$, some fixed $\eta<1$, if $l \geqslant 2$ and n is large enough (as we can assume), then the infinite-finite range inequality Lemma 2.3 gives

$$
\left\|\left(1+\left[\frac{n(x-\tau)}{\sqrt{1-\tau / a_{2 n}}}\right]^{2}\right)^{\prime} R_{n, \tau}(x) \frac{w(x)}{w(\tau)}\right\|_{L_{\infty}\left(a_{2 J_{n}} \leqslant|x| \leqslant 1\right.} \leqslant C_{5} \exp \left(-n^{C_{6}}\right) .
$$

Then (5.1) follows for $|x| \geqslant a_{2 l J_{n}}$.
We can now begin the proof of (5.1) proper. We consider five different ranges of $x:[0, \tau),\left[\tau, \tau^{*}\right],\left(\tau^{*}, a_{n}\right],\left(a_{n}, a_{2 I J n}\right],\left[-a_{2 I J n}, 0\right)$. Moreover, we set

$$
\Delta(x):=\left|\chi_{\left[\tau, a_{n}\right]}-R_{n, \tau}\right|(x) w(x) / w(\tau) .
$$

Proof of (5.1) for $x \in[0, \tau)$. Here using (4.1), and then (5.11),

$$
\begin{aligned}
\Delta(x) & =\frac{w(x) \int_{0}^{x} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} \\
& \leqslant C \frac{w(x) \int_{0}^{x} w^{-1}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{(1 / n) \sqrt{1-\zeta}} \\
& \leqslant C \frac{\int_{0}^{x} V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{(1 / n) \sqrt{1-\zeta}}
\end{aligned}
$$

by the monotonicity of w. Then (5.13) gives the result. Note that uniformly in τ and n,

$$
1-\zeta=1-\frac{\tau}{a_{2 l J n}} \sim 1-\frac{\tau}{a_{2 n}}
$$

Proof of (5.1) for $x \in\left[\tau, \tau^{*}\right)$. Here

$$
\begin{aligned}
\Delta(x) & =\frac{w(x) \int_{x}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} \\
& \leqslant C \frac{\int_{x}^{\tau^{*}} \exp (Q(s)-Q(x)) V_{n, \zeta}\left(s / a_{2 l J_{n}}\right)^{l J} d s}{\left(a_{n} / n\right) \sqrt{1-\zeta}}
\end{aligned}
$$

by (4.1) and (5.11). Now for $s \in\left(x, \tau^{*}\right)$, the property (5.7) of Q^{\prime} gives (recall $\tau=a_{r}$ and $\tau^{*} \leqslant a_{2 r}$)

$$
Q(s)-Q(x) \leqslant M Q^{\prime}\left(a_{r}\right)(s-x) \leqslant M Q^{\prime}(\tau)(s-\tau)
$$

Then using our bounds on $V_{n, \zeta}$ in (5.2), (5.3), we have

$$
\begin{aligned}
\Delta(x) & \leqslant C_{1} \frac{\int_{x}^{\tau^{*}} \exp \left(M Q^{\prime}(\tau)(s-\tau)\right) \min \left\{1, B a_{2 I J n} \sqrt{1-\zeta} /(n(s-\tau))\right\}^{l J} d s}{\left(a_{2 l J n} / n\right) \sqrt{1-\zeta}} \\
& =C_{1} B \int_{n(x-\tau) / B a_{2 J J_{n}} \sqrt{1-\zeta}}^{n\left(\tau^{*}-\tau\right) / B a_{2 J n} \sqrt{1-\zeta}} \exp \left(\frac{a_{2 l J_{n}}}{a_{n}} \frac{4 l M B u}{H}\right) \min \left\{1, \frac{1}{u}\right\}^{l J} d u \\
& \leqslant C_{2} \int_{n(x-\tau) / B a_{2 J J n} \sqrt{1-\zeta}}^{(2 / B) H \log H} g(u) \min \left\{1, \frac{1}{u}\right\}^{l J / 2} d u
\end{aligned}
$$

for say $n \geqslant n_{1}=n_{1}(J, L)$ by (5.9) and where

$$
g(u):=\exp \left(\frac{8 l M B u}{H}\right) \min \left\{1, \frac{1}{u}\right\}^{l J / 2} .
$$

We claim that if J is large enough,

$$
g(u) \leqslant C_{3}, u \in\left[0, \frac{2}{B} H \log H\right],
$$

with C_{3} independent of τ, n. First we show that

$$
\begin{equation*}
H \geqslant e ; H \geqslant e^{B / 2} \tag{5.14}
\end{equation*}
$$

uniformly for $\tau \in\left[S, a_{n}\right]$ and $n \geqslant n_{0}(J, l)$. Recall that B, J, M are independent of l (see (5.3), (5.7), (5.10)). Next, from (3.9), for $\tau \in\left[S, a_{n}\right]$,

$$
Q^{\prime}(\tau) \sqrt{1-\frac{\tau}{a_{2 n}}} \leqslant C_{4} n,
$$

with $C_{4} \neq C_{4}(n, \tau, l)$. Then from (5.8),

$$
H \geqslant \frac{4 l}{C_{4}}\left(\frac{1-\tau / a_{2 n}}{1-\tau / a_{2 l J n}}\right)^{1 / 2} .
$$

Here for $n \geqslant n_{0}(J, l)$, we see using the inequality $1-u \leqslant \log (1 / u), u \in(0,1]$, we obtain

$$
\begin{aligned}
\frac{1-\tau / a_{2 l J n}}{1-\tau / a_{2 n}} & =1+\frac{\tau}{a_{2 n}} \frac{1-a_{2 n} / a_{2 l J n}}{1-\tau / a_{2 n}} \\
& \leqslant 1+\frac{\log \left(a_{2 l J n} / a_{2 n}\right)}{1-a_{n} / a_{2 n}} \leqslant 1+C_{5} \log (C l J),
\end{aligned}
$$

by the left inequality in (2.11) and (2.9). Thus

$$
H \geqslant C_{6} l / \sqrt{\log (C l J)}
$$

It follows that we obtain (5.14) if we choose l charge enough. Then from (5.14) follows

$$
g(u) \leqslant \exp \left(\frac{8 l M B}{e}\right), \quad u \in(0,1] .
$$

Next, by elementary calculus, g has at most one local extremum in [$1, \infty$), and this is a minimum. Thus in any subinterval of $[1, \infty), g$ attains its maximum at the endpoints of that interval. In particular, we must
only check that $g((2 / B) H \log H)$ is bounded. (Note here that by (5.14), (2/B) $H \log H \geqslant e$). But

$$
g\left(\frac{2}{B} H \log H\right)=\exp \left(l \log H\left\{16 M-\frac{J}{2}\right\}-\frac{J l}{2} \log \left[\frac{2}{B} \log H\right]\right) \leqslant 1
$$

as $J \geqslant 32 M$ and $H \geqslant e^{B / 2}$. So we have

$$
\Delta(x) \leqslant C_{7} \int_{n(x-\tau) / B a_{2 J J_{n}} \sqrt{1-\zeta}}^{\infty} \min \left\{1, \frac{1}{u}\right\}^{l J / 2} d u
$$

and then (5.1) follows as $J \geqslant 4$.
Proof of (5.1) for $x \in\left(\tau^{*}, a_{n}\right]$. Here

$$
\begin{align*}
\Delta(x)= & \frac{w(x) \int_{\tau^{*}}^{x} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} \\
\leqslant & C_{1} \frac{\int_{\tau^{*}}^{x} \exp (Q(s)-Q(x)) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{(1 / n) \sqrt{1-\zeta}} \\
\leqslant & C_{2} \frac{n}{\sqrt{1-\zeta}}\left(e^{Q([\tau+x] / 2)-Q(x)} \int_{\tau^{*}}^{[\tau+x] / 2} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J} d s\right. \\
& \left.+\int_{[\tau+x] / 2}^{x} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J} d s\right) \\
\leqslant & C_{3}\left(e^{Q([\tau+x] / 2)-Q(x)}\left[1+\frac{n\left(\tau^{*}-\tau\right)}{a_{n} \sqrt{1-\zeta}}\right]^{-l}+\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-l}\right) \tag{5.15}
\end{align*}
$$

by (5.12). Here if $\tau^{*}>[\tau+x] / 2$, the first term in the last two lines can be dropped and we already have the desired estimate. In the contrary case, we must estimate the first term. We note that we can assume that $\tau^{*}<a_{n}$, for otherwise the current range of of x is empty. We consider two subcases (recall the definition (5.9) of τ^{*}):
(I) $\quad \tau^{*}=\tau+2\left(a_{n} / n\right) \sqrt{1-\zeta} H \log H$

We shall show that

$$
\begin{equation*}
\Gamma:=\frac{Q(x)-Q([\tau+x] / 2)}{l \log \left(1+n(x-\tau) / a_{n} \sqrt{1-\zeta}\right)} \geqslant 1 . \tag{5.16}
\end{equation*}
$$

Then the first part of the first term in the right-hand side of (5.15) already gives the desired estimate; the second part of that first term can be bounded above by 1 . Now since $t Q^{\prime}(t)$ is increasing,

$$
Q^{\prime}(t) \geqslant \frac{s}{t} Q^{\prime}(s) \geqslant \frac{1}{2} Q^{\prime}(s), \quad t \geqslant s \geqslant \frac{1}{2} .
$$

Hence

$$
Q(x)-Q\left(\frac{\tau+x}{2}\right) \geqslant \frac{1}{2} Q^{\prime}(\tau)\left(\frac{x-\tau}{2}\right) .
$$

Setting

$$
u:=\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}},
$$

we have

$$
\Gamma \geqslant \frac{Q^{\prime}(\tau) a_{n} \sqrt{1-\zeta} u}{4 n l \log (1+u)}=\frac{u}{H \log (1+u)} .
$$

But

$$
u \geqslant \frac{n\left(\tau^{*}-\tau\right)}{a_{n} \sqrt{1-\zeta}}=2 H \log H .
$$

Recall from (5.14) that $H \geqslant \mathrm{e}$. Then since the function $u / \log (1+u)$ is increasing for $u \geqslant 2 H \log H \geqslant e$, we obtain

$$
\Gamma \geqslant \frac{2 H \log H}{H \log (1+2 H \log H)}
$$

Using the inequality $1+2 t \log t \leqslant t^{2}, t \geqslant 1$, we have

$$
\Gamma \geqslant \frac{2 \log H}{\log H^{2}}=1
$$

So we have (5.16) and the result.

$$
\text { (II) } \quad \tau^{*}=a_{2 r}
$$

In this case, from (2.9),

$$
\tau^{*}-\tau=a_{2 r}-a_{r} \sim \frac{a_{r}}{T\left(a_{r}\right)} \sim \frac{1}{T(\tau)} .
$$

Now if $\tau^{*} \leqslant x \leqslant \tau(1+1 / T(\tau))$, then

$$
x-\tau \sim \tau^{*}-\tau
$$

and the second part of the first term in the right-hand side of (5.15) already gives the desired estimate (the first part of the first term can be bounded above by 1). If $x>\tau(1+1 / T(\tau))$, then

$$
\frac{x}{([x+\tau] / 2)} \geqslant 1+\frac{1}{2 T(\tau)+1} \geqslant 1+\frac{1}{3 T(\tau)}
$$

for τ close to 1 , so from (2.1),

$$
\frac{Q(x)}{Q([x+\tau] / 2)} \geqslant\left(1+\frac{1}{3 T(\tau)}\right)^{C_{2} T([x+\tau] / 2)} \geqslant C_{3}>1 .
$$

(Recall that $[x+\tau] / 2>\tau$). Then

$$
e^{Q([\tau+x] / 2)-Q(x)}\left[1+\frac{n\left(\tau^{*}-\tau\right)}{a_{n} \sqrt{1-\zeta}}\right]^{-l} \leqslant e^{-C_{4} Q(x)}\left[1+\frac{C_{5} n}{a_{n} T(\tau) \sqrt{1-\zeta}}\right]^{-l}
$$

This will admit the desired estimate, namely,

$$
C_{6}\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-l}
$$

provided

$$
e^{C_{4} Q(x) / l} \frac{1}{T(\tau)} \geqslant C_{7}(x-\tau) .
$$

But

$$
e^{C_{4} Q(x) / /} \frac{1}{T(\tau)} \geqslant C_{8} \frac{e^{C_{4} Q(x) / /}}{T(x)} \geqslant C_{9} Q(x) \geqslant C_{10}>C_{10}(x-\tau)
$$

by (2.7), (2.12) and the growth (2.4) of Q, so we have the desired estimate.

Proof of (5.1) for $x \in\left(a_{n}, a_{2 l J_{n}}\right]$. Here, much as in the previous range,

$$
\begin{aligned}
\Delta(x)= & \frac{w(x) \int_{0}^{x} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} \\
\leqslant & C_{2} \frac{n}{\sqrt{1-\zeta}}\left(e^{Q([\tau+x] / 2)-Q(x)} \int_{0}^{[\tau+x] / 2} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J} d s\right. \\
& \left.+\int_{[\tau+x] / 2}^{x} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J} d s\right) \\
\leqslant & C_{3}\left\{e^{Q([\tau+x] / 2)-Q(x)}+\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-l}\right\} .
\end{aligned}
$$

We must show that the first term on the last right-hand side admits a bound that is a constant multiple of the second term on the last right-hand side. Let us write $x=a_{v}($ so $v \geqslant n)$ and $[\tau+x] / 2=a_{u}$ (so that $u<v$). If first $u \geqslant n / 2$, then

$$
\begin{aligned}
Q(x)-Q\left(\frac{\tau+x}{2}\right) & \geqslant C_{4} Q^{\prime}\left(a_{n / 2}\right)(\tau-x) \\
& \geqslant C_{5} \frac{n}{a_{n}} T\left(a_{n}\right)^{1 / 2}(\tau-x) \geqslant C_{6} \frac{n(\tau-x)}{a_{n} \sqrt{1-\zeta}}
\end{aligned}
$$

by (2.6), (2.9). In this case the result follows. If $u<n / 2$,

$$
\begin{aligned}
Q(x)-Q\left(\frac{\tau+x}{2}\right) & \geqslant Q\left(a_{n}\right)-Q\left(a_{n / 2}\right) \\
& \geqslant C_{7} Q\left(a_{n}\right) \geqslant C_{8} n T\left(a_{n}\right)^{-1 / 2} \geqslant C_{9} n^{C_{10}}
\end{aligned}
$$

by (2.7), (2.10). Since

$$
\left[1+\frac{n(x-\tau)}{a_{n} \sqrt{1-\zeta}}\right]^{-l} \geqslant n^{-C_{11}}
$$

The result again follows.
Proof of (5.1) for $x \in\left[-a_{2 l J_{n}}, 0\right)$. Here using the evenness of w and (4.1), (5.11) as before gives

$$
\begin{aligned}
\Delta(x) & =\frac{w(x) \int_{x}^{0} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s}{w(\tau) \int_{0}^{\tau^{*}} G_{n}(s) V_{n, \zeta}\left(s / a_{2 l J n}\right)^{l J} d s} \\
& \leqslant C_{2} \frac{n}{\sqrt{1-\zeta}}\left(\int_{x}^{0} V_{n, \zeta}\left(\frac{s}{a_{2 l J n}}\right)^{l J} d s\right) \\
& \leqslant C_{3}\left[1+\frac{n \tau}{\sqrt{1-\zeta}}\right]^{-l}
\end{aligned}
$$

Here $\tau \sim \tau+|x|=|x-\tau|$ and the result follows.

6. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. Recall that our moduli of continuity are

$$
\begin{aligned}
\omega_{r, p}(f, w, t):= & \sup _{0<h \leqslant t}\left\|w \Delta_{h \Phi_{t}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(|x| \leqslant a_{1 /(2 t)}\right)} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
\bar{\omega}_{r, p}(f, w, t):= & \left(\frac{1}{t} \int_{0}^{t}\left\|w \Delta_{h \Phi_{t}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(|x| \leqslant a_{1 /(2 t)}\right.}^{p} d h\right)^{1 / p} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)}
\end{aligned}
$$

Of course $\bar{\omega}_{r, p} \leqslant \omega_{r, p}$. We need further moduli of continuity. If I is an interval, and $f: I \rightarrow \mathbb{R}$, we define for $t>0$

$$
\begin{equation*}
\Lambda_{r, p}(f, t, I):=\sup _{0<h \leqslant t}\left(\int_{I}\left|\Delta_{h}^{r}(f, x, I)\right|^{p} d x\right)^{1 / p} \tag{6.1}
\end{equation*}
$$

and its averaged cousin

$$
\begin{equation*}
\Omega_{r, p}(f, t, I):=\left(\frac{1}{t} \int_{0}^{t} \int_{I}\left|\Delta_{s}^{r}(f, x, I)\right|^{p} d x d s\right)^{1 / p} \tag{6.2}
\end{equation*}
$$

Note that for some C_{1}, C_{2} depending only on r and p (not on f, I, t),

$$
\begin{equation*}
C_{1} \leqslant \Lambda_{r, p}(f, t, I) / \Omega_{r, p}(f, t, I) \leqslant C_{2} \tag{6.3}
\end{equation*}
$$

See [17, p. 191]. For large enough n, we choose a partition

$$
\begin{equation*}
-a_{n}=\tau_{0 n}<\tau_{1 n}<\cdots<\tau_{n n}=a_{n} \tag{6.4}
\end{equation*}
$$

such that if

$$
\begin{equation*}
I_{k n}:=\left[\tau_{k n}, \tau_{k+1, n}\right], \quad 0 \leqslant k \leqslant n-1, \tag{6.5}
\end{equation*}
$$

then uniformly in k and n,

$$
\begin{equation*}
\left|I_{k n}\right| \sim \frac{1}{n} \sqrt{1-\frac{\left|\tau_{k n}\right|}{a_{2 n}}} \tag{6.6}
\end{equation*}
$$

($|I|$ denotes the length of the interval I.) We also set $I_{n n}:=\varnothing$. There are many ways to do this. For example, one can choose $\tau_{0 n}:=-a_{n}$ and for $1 \leqslant k \leqslant n$, determine $\tau_{k n}$ by

$$
\int_{\tau_{k-1, n}}^{\tau_{k n}} \frac{1}{\sqrt{1-|s| / a_{2 n}}} d s / \int_{-a_{n}}^{a_{n}} \frac{1}{\sqrt{1-|s| / a_{2 n}}} d s=\frac{1}{n}
$$

Let us set

$$
\begin{equation*}
I_{n}:=\left[-a_{n}, a_{n}\right]=\bigcup_{k=0}^{n-1} I_{k n} \tag{6.7}
\end{equation*}
$$

and ($\chi_{[a, b]}$ denotes the characteristic function of $[a, b]$)

$$
\begin{equation*}
\theta_{k n}(x):=\chi_{\left[\tau_{k n}, c_{n}\right]}(x)=\chi_{\cup_{i=k}^{n-1} I_{i n}}(x) \tag{6.8}
\end{equation*}
$$

We set

$$
\begin{equation*}
I_{k n}^{*}:=I_{k n} \cup I_{k+1, n}, 0 \leqslant k \leqslant n-1 . \tag{6.9}
\end{equation*}
$$

By Whitney's theorem [17, p. 195], we can find for $0 \leqslant k \leqslant n-1$ a polynomial p_{k} of degree at most r, such that

$$
\begin{equation*}
\left\|f-p_{k}\right\|_{L_{p}\left(I_{k k}^{*}\right)} \leqslant C_{2} \Lambda_{r, p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) \tag{6.10}
\end{equation*}
$$

with $C_{2} \neq C_{2}\left(f, n, k, I_{k n}^{*}\right)$.
Now define an approximating piecewise polynomial/spline by

$$
\begin{equation*}
L_{n}[f](x):=p_{0}(x) \theta_{0 n}(x)+\sum_{k=1}^{n-1}\left(p_{k}-p_{k-1}\right)(x) \theta_{k n}(x) . \tag{6.11}
\end{equation*}
$$

We first show that $L_{n}[f]$ is a good approximation to f :

Lemma 6.1. Let $\Psi_{n}:\left[-a_{n}, a_{n}\right] \rightarrow \mathbb{R}$ be such that uniformly in n,

$$
\begin{equation*}
\Psi_{n}(x) \sim \sqrt{1-\frac{|x|}{a_{2 n}}}, \quad x \in\left[-a_{n}, a_{n}\right] . \tag{6.12}
\end{equation*}
$$

Then

$$
\begin{align*}
\|(f- & \left.L_{n}[f]\right) w \|_{L_{p}[-1,1]} \\
\leqslant & C_{1}\left\{\left[n \int_{0}^{C_{2} / n}\left\|w \Delta_{h \Psi_{n}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left[-a_{n}, a_{n}\right]}^{p} d h\right]^{1 / p}\right. \\
& \left.+\|f w\|_{L_{p}\left(a_{n} \leqslant|x| \leqslant 1\right)}\right\} . \tag{6.13}
\end{align*}
$$

Here $C_{j} \neq C_{j}(f, n), j=1,2$. For $p=\infty$, we replace the p th root and integral by $\sup _{0<h \leqslant C_{2} n}$. Moreover, the constants are independent of $\left\{\Psi_{n}\right\}$, depending only on the constants in \sim in (6.12).

Proof. We first deal with $p<\infty$. Now

$$
\begin{equation*}
\left\|\left(f-L_{n}[f]\right) w\right\|_{L_{p}[-1,1]}^{p}=\sum_{j=0}^{n-1} \Delta_{j n}+\|f w\|_{L_{p}\left(a_{n} \leqslant|x| \leqslant 1\right)}^{p}, \tag{6.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta_{j n}:=\int_{I_{j n}}\left|f-L_{n}[f]\right|^{p} w^{p} . \tag{6.15}
\end{equation*}
$$

Note that in $\left(\tau_{j n}, \tau_{j+1, n}\right), L_{n}[f]=p_{j}$, so that

$$
\begin{align*}
\Delta_{j n} & =\int_{I_{j n}}\left|f-p_{j}\right|^{p} w^{p} \\
& \leqslant\|w\|_{L_{\infty}\left(I_{j n}\right)}^{p} C_{2}^{p} \Lambda_{r, p}^{p}\left(f,\left|I_{j n}^{*}\right|, I_{j n}^{*}\right) \\
& \leqslant\|w\|_{L_{\infty}\left(I_{j n}^{*}\right)}^{p}\left\|w^{-1}\right\|_{L_{\infty}\left(I_{j n}^{*}\right)}^{p} \frac{C_{3}}{\left|I_{j n}^{*}\right|} \int_{0}^{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}}\left|w \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d x d s, \tag{6.16}
\end{align*}
$$

by (6.2), (6.3). Now from (3.4) of Lemma 3.2(a),

$$
\begin{equation*}
\|w\|_{L_{\infty}\left(I_{j n}^{*}\right)}^{p}\left\|w^{-1}\right\|_{L_{\infty}\left(I_{j n}^{*}\right)}^{p} \sim 1 \tag{6.17}
\end{equation*}
$$

uniformly in j and n. Moreover, uniformly in j, n, and $x \in I_{j n}^{*}$,

$$
\left|I_{j n}^{*}\right| \sim \frac{1}{n} \sqrt{1-\frac{|x|}{a_{2 n}}} \sim \frac{1}{n} \Psi_{n}(x) .
$$

Then we can continue (6.16) as

$$
\begin{align*}
\Delta_{j n} & \leqslant \frac{C_{4}}{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}} \int_{0}^{\left|I_{j n}^{* *}\right|}\left|w \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x \\
& =\frac{C_{4}}{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}} \Psi_{n}(x) \int_{0}^{\left|I_{j n}^{*}\right| / \Psi_{n}(x)}\left|w \Delta_{t \Psi_{n}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d t d x \\
& \leqslant C_{5} n \int_{0}^{C_{6} / n} \int_{I_{j n}^{*}}\left|w \Delta_{t \Psi_{n}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d x d t . \tag{6.18}
\end{align*}
$$

Adding over j gives

$$
\begin{equation*}
\sum_{j=0}^{n-1} \Delta_{j n} \leqslant C_{5} n \int_{0}^{C_{6} / n} \int_{I_{n}}\left|w \Delta_{t \Psi_{n}(x)}^{r}(f, x,[-1,1])\right|^{p} d x d t \tag{6.19}
\end{equation*}
$$

This and (6.14) give the result. Note that we have effectively also shown that

$$
\begin{align*}
& \sum_{j=0}^{n-1} \Omega_{r, p}\left(f,\left|I_{j n}^{*}\right|, I_{j n}^{*}\right)^{p} w^{p}\left(\tau_{j n}\right) \\
& \quad \leqslant C_{5} n \int_{0}^{C_{6} / n} \int_{I_{n}}\left|w \Delta_{t \Psi_{n}(x)}^{r}(f, x,[-1,1])\right|^{p} d x d t \tag{6.20}
\end{align*}
$$

For $p=\infty$, the proof is similar, but easier: We see that

$$
\begin{aligned}
& \left\|\left(f-L_{n}[f]\right) w\right\|_{L_{\infty}(-1,1)}^{p} \\
& \quad \leqslant \max \left\{\max _{0 \leqslant j \leqslant n-1}\left\|\left(f-p_{j}\right) w\right\|_{L_{\infty}\left(I_{j p}\right)},\|f w\|_{L_{\infty}\left(a_{n} \leqslant|x| \leqslant 1\right)}\right\} .
\end{aligned}
$$

The rest of the proof is as before.
Now we can define our polynomial approximation to f :

$$
\begin{equation*}
P_{n}[f]:=p_{0}(x) R_{n, \tau_{o n}}(x)+\sum_{k=1}^{n-1}\left(p_{k}-p_{k-1}\right)(x) R_{n, \tau_{k n}}(x) . \tag{6.21}
\end{equation*}
$$

Note that this has been formed from $L_{n}[f]$ by replacing the characteristic function $\theta_{k n}(x)=\chi_{\left[\tau_{k n}, a_{n}\right]}(x)$ with its polynomial approximation $R_{n, \tau_{k n}}(x)$ formed in the previous section.

Lemma 6.2. Let $\left\{\Psi_{n}\right\}$ be as in the previous lemma. Then

$$
\begin{align*}
& \left\|\left(L_{n}[f]-P_{n}[f]\right) w\right\|_{L_{p}(-1,1)} \\
& \quad \leqslant C_{1}\left\{\left[n \int_{0}^{C_{2} / n}\left\|w \Delta_{h \Psi_{n}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left[-a_{n}, a_{n}\right]}^{p} d h\right]^{1 / p}+\|f w\|_{L_{p}\left(I_{0 n}^{*}\right)}\right\} . \tag{6.22}
\end{align*}
$$

For $p=\infty$, we replace the pth root and integral by $\sup _{0<h \leqslant C_{2} / n}$.
Proof. We see that if we define $p_{-1}(x) \equiv 0$,

$$
\begin{align*}
& \left(L_{n}[f]-P_{n}[f]\right)(x) \\
& \quad=\sum_{k=0}^{n-1}\left(p_{k}-p_{k-1}\right)(x)\left(\theta_{k n}(x)-R_{n, \tau_{k n}}(x)\right) . \tag{6.23}
\end{align*}
$$

We shall make substantial use of the following inequality: Let S be a polynomial of degree at most r and $[a, b]$ be a real interval. Then for all $x \in[-1,1]$,

$$
\begin{equation*}
|S(x)| \leqslant C(b-a)^{-1 / p}\left(1+\frac{\min \{|x-a|,|x-b|\}}{b-a}\right)^{r}\|S\|_{L_{p}[a, b]} \tag{6.24}
\end{equation*}
$$

Here $C \neq C(a, b, x, S)$ but $C=C(p, r)$. This follows from standard Nikolskii inequalities and the Bernstein-Walsh inequality. See for example [17, p. 193]. Hence for $x \in[-1,1]$, and $1 \leqslant k \leqslant n-1$,

$$
\left|p_{k}-p_{k-1}\right|(x) \leqslant C\left|I_{k n}\right|^{-1 / p}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{r}\left\|p_{k}-p_{k-1}\right\|_{L_{p}\left(I_{k n}\right)} .
$$

This is still true for $k=0$ if we recall that $p_{-1} \equiv 0$. Now for $1 \leqslant k \leqslant n-1$, (6.10) gives

$$
\left\|p_{k}-p_{k-1}\right\|_{L_{p}\left(I_{k n}\right)} \leqslant C_{1} \sum_{i=k-1}^{k} \Lambda_{r, p}\left(f,\left|I_{i n}^{*}\right|, I_{i n}^{*}\right),
$$

where $C_{1} \neq C_{1}(f, k, n)$. This remains true for $k=0$ if we set

$$
\Omega_{r, p}\left(f,\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right):=\Lambda_{r, p}\left(f,\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right):=\|f\|_{L_{p}\left(I_{o n}^{*}\right)} .
$$

Since (see (3.5), (6.6)) uniformly in k, n, and $x \in[-1,1]$,

$$
1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|} \sim 1+\frac{\left|x-\tau_{k-1, n}\right|}{\left|I_{k-1, n}\right|}
$$

we obtain from Theorem 5.1, uniformly for $0 \leqslant k \leqslant n-1$ and $x \in[-1,1]$,

$$
\begin{align*}
& \left|\left(p_{k}-p_{k-1}\right)(x)\left(\theta_{k n}(x)-R_{n, \tau_{k n}}(x)\right)\right| \frac{w(x)}{w\left(\tau_{k n}\right)} \\
& \quad \leqslant C_{2} \sum_{i=k-1}^{k}\left|I_{i n}\right|^{-1 / p}\left(1+\frac{\left|x-\tau_{i n}\right|}{\left|I_{i n}\right|}\right)^{r-l} \Omega_{r, p}\left(f,\left|I_{i n}^{*}\right|, I_{i n}^{*}\right) . \tag{6.25}
\end{align*}
$$

Here and in the sequel, we set $\left|I_{-1, n}\right|:=\left|I_{0, n}\right|$ and $\tau_{-1, n}:=\tau_{0, n}$. We consider three different ranges of p :

$$
\text { (I) } 0<p<1 \text {. }
$$

Here from (6.23) and then (6.25)

$$
\begin{align*}
\int_{-1}^{1} & \left(\left|L_{n}[f]-P_{n}[f]\right| w\right)^{p} \\
& \leqslant \sum_{k=0}^{n-1} \int_{-1}^{1}\left(\left|p_{k}-p_{k-1}\right|\left|\theta_{k n}-R_{n, \tau_{k n}}\right| w\right)^{p} \\
& \leqslant \sum_{k=-1}^{n-1}\left|I_{k n}\right|^{-1} \Omega_{r, p}^{p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) w^{p}\left(\tau_{k n}\right) \int_{-1}^{1}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) p} d x . \tag{6.26}
\end{align*}
$$

Here if $(r-l) p<-1$,

$$
\left|I_{k n}\right|^{-1} \int_{-1}^{1}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) p} d x \leqslant \int_{-\infty}^{\infty}(1+|u|)^{(r-l) p} d u=: C_{3}<\infty
$$

So

$$
\int_{-1}^{1}\left(\left|L_{n}[f]-P_{n}[f]\right| w\right)^{p} \leqslant C_{4} \sum_{k=-1}^{n-1} \Omega_{r, p}^{p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) w^{p}\left(\tau_{k n}\right) .
$$

This is the same as our sum in (6.20)), except for the term for $k=-1$. So the estimate (6.20) gives (6.22), keeping in mind our choice of $\Lambda_{r, p}\left(f,\left|I_{-1, n}^{*}\right|, I_{-1, n}^{*}\right)$.
(II) $1 \leqslant p<\infty$.

From (6.23), (6.25) and then Hölder's inequality,
$\left\{\left|L_{n}[f]-P_{n}[f]\right|(x) w(x)\right\}^{p}$

$$
\begin{align*}
& \leqslant C\left\{\sum_{k=-1}^{n-1}\left|I_{k n}\right|^{-1 / p}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{r-l} \Omega_{r, p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) w\left(\tau_{k n}\right)\right\}^{p} \\
& \leqslant C \sum_{k=-1}^{n}\left|I_{k n}\right|^{-1}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) p / 2} \Omega_{r, p}^{p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) w^{p}\left(\tau_{k n}\right) \cdot S_{n}(x)^{p / q}, \tag{6.27}
\end{align*}
$$

where $q=p /(p-1)$ and

$$
S_{n}(x):=\sum_{k=1}^{n}\left(1+\frac{\left|x-\tau_{k n}\right|}{\left|I_{k n}\right|}\right)^{(r-l) q / 2} .
$$

We shall show that if $(r-l) q / 2<-1$, then

$$
\begin{equation*}
\sup \sup S_{n}(x) \leqslant C_{1}<\infty . \tag{6.28}
\end{equation*}
$$

Note that $S_{n}(x)$ is a decreasing function of x for $x \geqslant a_{n}=\tau_{n n}$, so it suffices to consider $x \in\left[0, a_{n}\right]$. Recall that

$$
\left|I_{k n}\right| \sim\left|I_{k+1, n}\right| \sim \frac{1}{n} \sqrt{1-\frac{\left|\tau_{k n}\right|}{a_{2 n}}} .
$$

It is then not difficult to see that

$$
\begin{aligned}
S_{n}(x) & \leqslant C_{2} n \int_{-a_{n}}^{a_{n}}\left(1+n \frac{|x-u|}{\sqrt{1-|u| / a_{2 n}}}\right)^{(r-l) q / 2} \frac{d u}{\sqrt{1-|u| / a_{2 n}}} \\
& \leqslant C_{3} n \int_{-1}^{1}\left(1+n \frac{|\bar{x}-s|}{\sqrt{1-s}}\right)^{(r-l) q / 2} \frac{d s}{\sqrt{1-s}},
\end{aligned}
$$

where $\bar{x}:=x / a_{2 n}$, so that

$$
1-\bar{x} \geqslant 1-a_{n} / a_{2 n} \geqslant C_{4} T\left(a_{n}\right)^{-1} \geqslant C_{5} n^{-2} .
$$

We make the substitution $(1-s)=(1-\bar{x}) w$ to obtain

$$
\begin{aligned}
S_{n}(x) \leqslant & C_{3} n \sqrt{1-\bar{x}} \int_{0}^{2 /(1-\bar{x})}\left(1+n \sqrt{1-\bar{x}} \frac{|w-1|}{\sqrt{w}}\right)^{(r-l) q / 2} \frac{d w}{\sqrt{w}} \\
\leqslant & C_{4} n \sqrt{1-\bar{x}}\left\{\int_{0}^{1 / 2}\left[1+\frac{n \sqrt{1-\bar{x}}}{\sqrt{w}}\right]^{(r-l) q / 2} \frac{d w}{\sqrt{w}}\right. \\
& +\int_{1 / 2}^{3 / 2}[1+n \sqrt{1-\bar{x}}|w-1|]^{(r-l) q / 2} d w \\
& \left.+\int_{3 / 2}^{2 /(1-\bar{x})}[1+n \sqrt{(1-\bar{x}) w}]^{(r-l) q / 2} \frac{d w}{\sqrt{w}}\right\} .
\end{aligned}
$$

(We can omit the third integral if $2 /(1-\bar{x}) \leqslant 3 / 2$.) We now make the substitutions $w=n^{2}(1-\bar{x}) v$ in the first integral, $v=n \sqrt{1-\bar{x}}(w-1)$ in the second integral, and $v=n^{2}(1-\bar{x}) w$ in the third integral. It is then not difficult to see that the resulting terms are bounded independent of n and x if l is large enough. So we have (6.28). Then using this, integrating (6.27) (we can assume that $(r-l) p / 2<-1$) and using (6.20) gives the result.
(III) $p=\infty$.

Now by (6.23), (6.25)

$$
\begin{aligned}
\mid L_{n}[f] & -P_{n}[f] \mid(x) w(x) \\
& \leqslant C \sum_{k=0}^{n-1}\left|p_{k}-p_{k-1}\right|(x)\left|\theta_{k n}-R_{n, \tau_{k n}}\right|(x) w(x) \\
& \leqslant C \max _{-1 \leqslant k \leqslant n-1} \Omega_{r, p}\left(f,\left|I_{k n}^{*}\right|, I_{k n}^{*}\right) w\left(\tau_{k n}\right) \cdot \sum_{k=0}^{n-1}\left(1+\frac{\left|x-\tau_{k n}\right|}{\mid I_{k n}}\right)^{(r-l)} .
\end{aligned}
$$

As before, the sum is bounded if l is large enough. Then we can continue this as

$$
\begin{aligned}
& \leqslant C_{1}\left\{\sup _{0 \leqslant k \leqslant n-1} \sup _{0<h \leqslant\left|I_{k n}^{*}\right|}\left\|\Delta_{h}^{r}\left(f, x, I_{k n}^{*}\right) w\right\|_{L_{\infty}\left(I_{k n}^{*}\right)}+\|f w\|_{L_{\infty}\left(I_{0 n}^{*}\right)}\right\} \\
& \leqslant C_{2}\left\{\sup _{0 \leqslant k \leqslant n-1} \sup _{0<h \leqslant C / n}\left\|\Delta_{h \Psi_{n}(x)}^{r}\left(f, x, I_{k n}^{*}\right) w\right\|_{L_{\infty}\left(I_{k n}^{*}\right)}+\|f w\|_{L_{\infty}\left(I_{0 n}^{*}\right)}\right\} \\
& \leqslant C_{3}\left\{\sup _{0<h \leqslant C / n}\left\|\Delta_{h \Psi_{n}(x)}^{r}(f, x,[-1,1]) w\right\|_{L_{\infty}\left(-a_{n}, a_{n}\right)}+\|f w\|_{L_{\infty}\left(I_{0 n}^{*}\right.}\right\} .
\end{aligned}
$$

We can now turn to the
Proof of Theorem 1.2. We do this for $p<\infty$; the case $p=\infty$ is similar, but much easier. Now recall that $R_{n, \tau}$ has degree at most $2 l J n$, where J is
as in Theorem 5.1. So $P_{n}[f]$ has degree at most $2 l J n+r$. So, if $M:=3 l J$, we have for large n

$$
\begin{align*}
E_{M n}[f]_{w, p} \leqslant & \left\|\left(f-P_{n}[f]\right) w\right\|_{L_{p}(-1,1)} \\
\leqslant & C\left\{\left\|\left(f-L_{n}[f]\right) w\right\|_{L_{p}(-1,1)}+\left\|\left(L_{n}[f]-P_{n}[f]\right) w\right\|_{L_{p}(-1,1)}\right\} \\
\leqslant & C_{1}\left\{\left[n \int_{0}^{C_{2} / n}\left\|w \Delta_{h \Psi_{n}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(-a_{n}, a_{n}\right)}^{p} d h\right]^{1 / p}\right. \\
& \left.+\|f w\|_{L_{p}\left(a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) \leqslant|x| \leqslant 1\right)}\right\} . \tag{6.29}
\end{align*}
$$

Here we have used Lemmas 6.1 and 6.2, and also (6.6), which implies that

$$
\left|I_{0 n}^{*}\right| \sim \frac{1}{n} \sqrt{1-\frac{a_{n}}{a_{2 n}}} \sim \frac{1}{n} T\left(a_{n}\right)^{-1 / 2} .
$$

Next for

$$
\begin{equation*}
M n \leqslant j<M(n+1) \tag{6.30}
\end{equation*}
$$

we write

$$
n=\kappa j,
$$

where $\kappa=\kappa(j, n)$. Note that

$$
\begin{equation*}
\kappa=\frac{n}{j} \rightarrow \frac{1}{M}, \quad j \rightarrow \infty . \tag{6.31}
\end{equation*}
$$

Let

$$
t:=t(j)=\frac{M}{2 j}
$$

From (6.30) and (6.31), we have for $n \geqslant 2$

$$
n \leqslant \frac{j}{M}=\frac{1}{2 t} ; n \geqslant \frac{2}{3} \frac{j}{M}=\frac{1}{3 t} .
$$

We claim that for large enough j,

$$
a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) \geqslant a_{1 /(4 t)} .
$$

To see this, note from (2.12) that

$$
\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}=o\left(T\left(a_{n}\right)^{-1}\right)
$$

so that by (2.9)

$$
\begin{aligned}
a_{n}\left(1-C_{2}\left[n T\left(a_{n}\right)^{1 / 2}\right]^{-1}\right) & \geqslant a_{n}\left(1-o\left(\frac{1}{T\left(a_{n}\right)}\right)\right) \geqslant a_{2 n / 3} \\
& =a_{(1+o(1)) 2 j / 3 M}=a_{(1+o(1)) /(3 t)} \geqslant a_{1 /(4 t)}
\end{aligned}
$$

for large enough j. Then from (6.29),

$$
\begin{align*}
E_{j}[f]_{w, p} \leqslant & E_{M n}[f]_{w, p} \\
\leqslant & C_{1}\left\{\left[\frac{1}{2 t} \int_{0}^{3 C_{2} t}\left\|w \Delta_{h \psi_{n}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(-a_{1 /(2 t)}, a_{1 /(2 t)}\right.}^{p} d h\right]^{1 / p}\right. \\
& \left.+\|f w\|_{L_{p}\left(a_{1 /(4)} \leqslant|x| \leqslant 1\right)}\right\} . \tag{6.32}
\end{align*}
$$

Now we choose

$$
\Psi_{n}:=\left(3 C_{2}\right)^{-1} \Phi_{t} .
$$

We must show that (6.12) holds with constants independent of x, j and n, that is,

$$
\left(3 C_{2}\right)^{-1} \Phi_{t}(x) \sim \sqrt{1-\frac{|x|}{a_{2 n}}}, \quad|x| \leqslant a_{n} .
$$

But for this range of x, (2.9) shows that

$$
\sqrt{1-\frac{|x|}{a_{2 n}}} \sim \sqrt{1-\frac{|x|}{a_{2 n}}}+T\left(a_{2 n}\right)^{-1 / 2}=\Phi_{1 / 2 n}(x) \sim \Phi_{t}(x)
$$

by Lemma 3.1(b). Setting $h_{1}:=h /\left(3 C_{2}\right)$ so that $h \Psi_{n}=h_{1} \Phi_{t}$ we can rewrite (6.32) as

$$
\begin{aligned}
E_{j}[f]_{w, p} \leqslant & C_{1}\left\{\left[\frac{3 C_{2}}{2 t} \int_{0}^{t}\left\|w \Delta_{h_{1} \Phi_{t}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(-a_{1 /(2 t)}, a_{1 /(2 t)}\right.}^{p} d h_{1}\right]^{1 / p}\right. \\
& \left.+\|f w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)}\right\} .
\end{aligned}
$$

Replacing f by $f-P$ for suitable $P \in \mathscr{P}_{r-1}$, and using $\Delta_{h_{1} \Phi_{t}(x)}^{r}(P, x$, $[-1,1]) \equiv 0$, we obtain

$$
\begin{aligned}
\left.E_{j}[f]\right]_{w, p}= & E_{j}[f-P]_{w, p} \\
\leqslant & C_{3}\left\{\left[\frac{1}{t} \int_{0}^{t}\left\|w \Delta_{h_{1} \Phi_{t}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left(-a_{1 /(2 t)}, a_{1 /(2 t)}\right.}^{p} d h_{1}\right]^{1 / p}\right. \\
& \left.+\inf _{P \in \mathscr{Y}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)}\right\} \\
= & C_{3} \bar{\omega}_{r, p}(f, w, t)=C_{3} \bar{\omega}_{r, p}\left(f, w, \frac{M}{2 j}\right)
\end{aligned}
$$

For future use, we record a slight generalization of Theorem 1.2:
Theorem 6.3. For $j \geqslant C_{3}$,

$$
\begin{equation*}
E_{j}[f]_{w, p} \leqslant C_{1} \inf _{\rho \in[3 / 4,1]} \bar{\omega}_{r, p}\left(f, w, \frac{C_{2} \rho}{j}\right), \tag{6.33}
\end{equation*}
$$

where $C_{k} \neq C_{k}(j, \rho, f), k=1,2,3$.
Proof. The only difference to the above proof is that we choose $t:=M \rho / 2 j$. Then uniformly for $\rho \in\left[\frac{3}{4}, 1\right]$,

$$
n t=\frac{n M \rho}{2 j} \rightarrow \frac{\rho}{2}, \quad j \rightarrow \infty
$$

and as $\rho / 2 \geqslant 3 / 8>1 / 3$, we have for $j \geqslant j_{0} \neq j_{0}(\rho, f, t)$

$$
\frac{1}{2 t} \geqslant n \geqslant \frac{1}{3 t} .
$$

The previous considerations then remain the same, as does our choice of Ψ_{n}, the point being that (6.12) holds uniformly in ρ.

7. THE PROOF OF THEOREM 1.3

We begin with a technical lemma:
Lemma 7.1. (a) For $0<s<t \leqslant C$,

$$
\begin{equation*}
T\left(a_{1 / t}\right)\left(1-\frac{a_{1 / t}}{a_{1 / s}}\right) \leqslant C_{1} \log \left(C_{2} \frac{t}{s}\right) . \tag{7.1}
\end{equation*}
$$

(b) For $0<s<t \leqslant C$,

$$
\begin{equation*}
\sup _{x \in[-1,1]} \frac{\Phi_{s}(x)}{\Phi_{t}(x)} \leqslant C_{2} \sqrt{\log \left(2+\frac{t}{s}\right)} . \tag{7.2}
\end{equation*}
$$

Hence, given $\gamma>0$,

$$
\begin{equation*}
\sup _{x \in[-1,1]}\left(\frac{s}{t}\right)^{\gamma} \frac{\Phi_{s}(x)}{\Phi_{t}(x)} \leqslant C_{3} . \tag{7.3}
\end{equation*}
$$

Proof. (a) Using the inequality $1-u \leqslant \log (1 / u), u \in(0,1]$, we obtain

$$
1-\frac{a_{1 / t}}{a_{1 / s}} \leqslant \log \frac{a_{1 / s}}{a_{1 / t}} \leqslant C_{4} \frac{\log (C t / s)}{T\left(a_{1 / t}\right)},
$$

by (2.11).
(b) Now if $x \geqslant 0$,

$$
\begin{aligned}
\left|1-\frac{x}{a_{1 / s}}\right| & \leqslant\left|1-\frac{x}{a_{1 / t}}\right|+\frac{x}{a_{1 / t}}\left|1-\frac{a_{1 / t}}{a_{1 / s}}\right| \\
& \leqslant\left|1-\frac{x}{a_{1 / t}}\right|+C_{5} T\left(a_{1 / t}\right)^{-1} \log \left(C \frac{t}{s}\right)
\end{aligned}
$$

by (a) provided $t \leqslant C$, say. We deduce that

$$
\left|1-\frac{x}{a_{1 / s}}\right|^{1 / 2} \leqslant C_{6} \Phi_{t}(x) \sqrt{\log \left(2+\frac{t}{s}\right)},
$$

and since also $T\left(a_{1 / s}\right)^{-1 / 2} \leqslant C_{7} T\left(a_{1 / t}\right)^{-1 / 2}$, we obtain (7.2). Then (7.3) also follows.

We turn to the proof of Theorem 1.3. We provide full proofs only where the details are significantly different and otherwise refer back for proofs. We begin with an analogue of Lemma 6.1 for $L_{n}[f]$ of (6.11).

Lemma 7.2.

$$
\begin{align*}
\|(f- & \left.L_{n}[f]\right) w \|_{L_{p}[-1,1]} \\
\leqslant & C_{1}\left\{\sup _{\substack{0<h \leqslant 1 /(3 n) \\
0<\tau \leqslant L}}\left\|w \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x,[-1,1])\right\|_{L_{p}\left[-a_{1 /(2 h)}, a_{1 /(2 h)}\right]}\right. \\
& \left.+\|f w\|_{L_{p}\left(a_{n} \leqslant|x| \leqslant 1\right)}\right\} . \tag{7.4}
\end{align*}
$$

Here L is independent of f, n.

Proof. We do this for $0<p<\infty$; the case $p=\infty$ is simpler. Recall that the crux of Lemma 6.1 is estimation of

$$
\begin{align*}
\Delta_{j n} & :=\int_{I_{j n}}\left(\left|f-p_{j}\right| w\right)^{p} \\
& \leqslant C_{1} \Omega_{r, p}\left(f,\left|I_{j n}^{*}\right|, I_{j n}^{*}\right)^{p} w^{p}\left(\tau_{j n}\right) \\
& \leqslant \frac{C_{2}}{\left|I_{j n}^{*}\right|} \int_{I_{j n}^{*}} \int_{0}^{\left|I_{j n}^{*}\right|}\left|w \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x . \tag{7.5}
\end{align*}
$$

(See (6.16).) We now choose $L>0$ such that

$$
\begin{equation*}
\sup _{x \in(-1,1)} \frac{(h / L) \Phi_{h / L}(x)}{h \Phi_{h}(x)} \leqslant \frac{1}{2}, \quad 0<h \leqslant 1 . \tag{7.6}
\end{equation*}
$$

This is possible by (7.2). Now we choose

$$
\delta_{n, k}(x):=L^{1-k}(3 n)^{-1} \Phi_{L^{1-k}(3 n)^{-1}}(x), \quad k \geqslant 1 .
$$

Note that by (7.6),

$$
\begin{equation*}
\sup _{x \in(-1,1)} \frac{\delta_{n, k+1}(x)}{\delta_{n, k}(x)} \leqslant \frac{1}{2} . \tag{7.7}
\end{equation*}
$$

In view of (6.6), (3.6), and (3.7), we may assume that L is so large that uniformly in $n, j, x \in I_{j n}^{*}$,

$$
\left|I_{j n}^{*}\right| \leqslant \frac{L}{3 n} \Phi_{1 / 3 n}(x)=L \delta_{n, 1}(x)
$$

and

$$
\left|I_{j n}^{*}\right| \sim \delta_{n, 1}(x)
$$

Then from (7.5),

$$
\begin{aligned}
\Delta_{j n} & \leqslant C_{3} \int_{I_{j n}^{*}} \int_{0}^{L \delta_{n, 1}(x)} \frac{1}{\delta_{n, 1}(x)}\left|w \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x \\
& =C_{3} \int_{I_{j n}^{*}} \sum_{k=1}^{\infty} \int_{L \delta_{n, k+1}(x)}^{L \delta_{n, k}(x)} \frac{1}{\delta_{n, 1}(x)}\left|w \Delta_{s}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d s d x \\
& =C_{3} \int_{I_{j n}^{*}} \sum_{k=1}^{\infty} \frac{\delta_{n, k}(x)}{\delta_{n, 1}(x)} \int_{L \delta_{n, k+1}(x) / \delta_{n, k}(x)}^{L}\left|w \Delta_{\tau \delta_{n, k}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d \tau d x \\
& \leqslant C_{4} \int_{I_{j n}^{*}} \sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k-1} \int_{0}^{L}\left|w \Delta_{\tau \delta_{n, k}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d \tau d x .
\end{aligned}
$$

Then as also $n \leqslant 1 /(2 h)$ for $0<h \leqslant 1 /(3 n)$,

$$
\begin{align*}
\sum_{j=0}^{n-1} \Delta_{j n} & \leqslant C_{5} \int_{-a_{n}}^{a_{n}} \sum_{k=1}^{\infty}\left(\frac{1}{2}\right)^{k-1} \int_{0}^{L}\left|w \Delta_{\tau \delta_{n, k}(x)}^{r}(f, x,(-1,1))\right|^{p} d \tau d x \\
& \leqslant 2 C_{5} \sup _{\substack{0<h \leqslant 1 /(3 n) \\
0<\tau \leqslant L}} \int_{-a_{1 /(2 h)}}^{a_{1 /(2 h)}}\left|w \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x,(-1,1))\right|^{p} d x . \tag{7.8}
\end{align*}
$$

The rest of the proof is as before.
We turn to the
Proof of Theorem 1.3. The method of proof of Lemma 6.2 gives at least for $p<\infty$,

$$
\begin{aligned}
& \left\|\left(L_{n}[f]-P_{n}[f]\right) w\right\|_{L_{p}[-1,1]}^{p} \\
& \quad \leqslant C_{1}\left\{\sup _{\substack{0 \lll 1 /(3 n) \\
0<\tau \leqslant L}} \int_{-a_{1 /(2 h)}}^{a_{1 /(2 h)}}\left|w \Delta_{\tau h \Phi_{h}(x)}^{r}(f, x,(-1,1))\right|^{p} d x+\|f w\|_{L_{p}\left(I_{0 n}^{*}\right)}\right\} .
\end{aligned}
$$

(We substitute for (6.20) the appropriate estimate (7.8) in the relevant places.) The rest of the estimation is almost the same as in the proof of Theorem 1.2. We can still choose $t:=M /(2 j)$ and still have $1 /(3 n) \leqslant t$.

Finally, we briefly show that under some additional conditions on Q, we can use the simpler modulus

$$
\begin{align*}
\omega_{r, p}^{\#}(f, w, t):= & \sup _{0<h \leqslant t}\left\|w \Delta_{L h \Phi_{h}(x)}^{r}(f, x,(-1,1))\right\|_{L_{p}\left(-a_{1 /(2 h)}, a_{1 /(2 h)}\right)} \\
& +\inf _{P \in \mathscr{P}_{r-1}}\|(f-P) w\|_{L_{p}\left(a_{1 /(4 t)} \leqslant|x| \leqslant 1\right)}, \tag{7.9}
\end{align*}
$$

with L fixed as above. We do this for $p<\infty ; p=\infty$ is easier. We shall assume in addition to $w \in \mathscr{E}$ that $Q^{\prime \prime}$ exists and is non-negative in $(0,1)$, and that

$$
\begin{equation*}
\frac{Q^{\prime \prime}(x)}{Q^{\prime}(x)} \sim \frac{Q^{\prime}(x)}{Q(x)}, \quad x \in(0,1) \tag{7.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|T^{\prime}(x)\right| \leqslant C_{1} T^{2}(x), \quad x \in(C, 1) \tag{7.11}
\end{equation*}
$$

Using (7.10) and the method of proof of Lemma 3.2 in [10, p. 24] we obtain

$$
\begin{equation*}
\frac{a_{u}^{\prime}}{a_{u}} \sim \frac{1}{u T\left(a_{u}\right)}, \quad u \in(0, \infty) . \tag{7.12}
\end{equation*}
$$

(Note that T has a different meaning in [10], but has the same rate of growth as the T here, because of (7.10).) Moreover, using (7.11) and (7.12) it is not difficult to see that

$$
\left|\frac{d}{d t}\left(t T\left(a_{1 / t}\right)^{-1 / 2}\right)\right| \leqslant C_{2} T\left(a_{1 / t}\right)^{-1 / 2}, \quad t \in(0, C)
$$

and hence also

$$
\begin{equation*}
\left|\frac{d}{d t}\left(t \Phi_{t}(x)\right)\right| \leqslant C_{3} \Phi_{t}(x) \tag{7.13}
\end{equation*}
$$

for

$$
\begin{equation*}
0<t \leqslant C_{4} ; \quad\left|1-\frac{|x|}{a_{1 / t}}\right| \geqslant \frac{\varepsilon}{T\left(a_{1 / t}\right)} . \tag{7.14}
\end{equation*}
$$

Here ε is any fixed positive number. We now estimate $\Delta_{j n}$ a little differently from the way we proceeded after (7.5). Let us make the substitution $s=\operatorname{Lt} \Phi_{t}(x)$ in the right-hand side of (7.5), keep our choice of L there, and recall that

$$
\left|I_{j n}^{*}\right| \leqslant \frac{L}{3 n} \Phi_{1 / 3 n}(x), \quad x \in I_{j n}^{*}
$$

to deduce that

$$
\begin{aligned}
\Delta_{j n} & \leqslant C_{5} \int_{I_{j n}^{*}} \int_{0}^{1 /(3 n)} \frac{1}{(1 /(3 n)) \Phi_{1 /(3 n)}(x)}\left|w \Delta_{L t \Phi_{t}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p}\left|\frac{d}{d t}\left[t \Phi_{t}(x)\right]\right| d t d x \\
& \leqslant C_{6} n \int_{I_{j n}^{*}} \int_{0}^{1 /(3 n)} \sqrt{\log \left(2+\frac{1}{3 n t}\right)}\left|w \Delta_{L t \Phi_{t}(x)}^{r}\left(f, x, I_{j n}^{*}\right)\right|^{p} d t d x
\end{aligned}
$$

by first (7.13) and then (7.2). In applying (7.13) we must ensure that the range conditions in (7.14) must hold for $x \in I_{j n}^{*}$ and $t \leqslant 1 / 3 n$. In fact if $|x| \leqslant a_{n}$, then for $t \leqslant 1 / 3 n$,

$$
\left|1-\frac{|x|}{a_{1 / t}}\right| \geqslant 1-\frac{a_{n}}{a_{3 n}} \geqslant C_{7} T\left(a_{n}\right)^{-1} \geqslant C_{8} T\left(a_{1 / t}\right)^{-1} .
$$

Thus

$$
\begin{aligned}
& \sum_{j=0}^{n-1} \Delta_{j n} \\
& \quad \leqslant C_{9} n \int_{-a_{n}}^{a_{n}} \int_{0}^{1 /(3 n)} \sqrt{\log \left(2+\frac{1}{3 n t}\right)}\left|w \Delta_{L t \Phi_{t}(x)}^{r}(f, x,(-1,1))\right|^{p} d t d x \\
& \quad \leqslant C_{10} \sup _{0<h \leqslant 1 /(3 n)} \int_{-a_{1 /(2 h)}}^{a_{1 /(2 h)}}\left|w \Delta_{L h \Phi_{h}(x)}^{r}(f, x,(-1,1))\right|^{p} d x \int_{0}^{1} \sqrt{\log \left(2+\frac{1}{s}\right)} d s .
\end{aligned}
$$

So under $\omega \in \mathscr{E}$, and the additional conditions (7.10), (7.11) on Q, we obtain

$$
\begin{equation*}
E_{n}[f]_{w, p} \leqslant C_{11} \omega_{r, p}^{\#}\left(f, w, \frac{1}{n}\right) . \tag{7.15}
\end{equation*}
$$

We note finally that the additional conditions (7.10) and (7.11) are certainly satisfied for $w_{k, \alpha}$ of (1.5).

ACKNOWLEDGMENTS

This paper was begun in 1992 as a joint project with Vili Totik. Because the methods now used are different from those originally proposed, Vili Totik felt that he could not be a coauthor. Nevertheless, he contributed substantially in terms of discussions, scope of the project, and so on. Many of the ideas of proof of this paper arose out of earlier work with Zeev Ditzian on Freud weights.

REFERENCES

1. J. Clunie and T. Kövari, On integral functions having prescribed asymptotic growth, II, Canad. J. Math. 20 (1968), 7-20.
2. S. B. Damelin and D. S. Lubinsky, Jackson theorems for Erdös weights in $L_{p}(0<p \leqslant \infty)$, to appear in J. Approx. Theory.
3. R. A. DeVore and V. A. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414.
4. R. A. DeVore, D. Leviatan, and X. M. Yu, Polynomial approximation in $L_{p}(0<p<1)$, Constr. Approx. 8 (1992), 187-201.
5. Z. Ditzian and D. S. Lubinsky, Jackson and smoothness theores for Freud weights in L_{p}, $0<p \leqslant \infty$, Constr. Approx. 13 (1997), 99-152.
6. Z. Ditzian and V. Totik, "Moduli of Smoothness," Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, Berlin, 1987.
7. G. Freud, "Orthogonal Polynomials," Pergamon/Akademiai Kiado, Budapest, 1971.
8. M. von Golitschek, G. G. Lorentz, and Y. Makovoz, Asymptotics of weighted polynomials, in "Progress in Approximation Theory" (A. A. Gonchar and E. B. Saff, Eds.), Springer Series in Computational Mathematics, Vol. 19, pp. 431-451, Springer-Verlag, New York, 1992.
9. A. L. Levin and D. S. Lubinsky, Christoffel functions, orthogonal polynomials, and Nevai's conjecture for Freud weights, Constr. Approx. 8 (1992), 463-535.
10. A. L. Levin and D. S. Lubinsky, Christoffel functions and orthogonal polynomials for exponential weights on ($-1,1$), Mem. Amer. Soc. 535 (1994), 111.
11. D. S. Lubinsky and E. B. Saff, Markov-Bernstein and Nikolskii inequalities, and Christoffel functions for exponential weights on (-1, 1), SIAM J. Math. Anal. 24 (1993), 528-556.
12. H. N. Mhaskar and E. B. Saff, Extremal problems for polynomials with exponential weights, Trans. Amer. Math. Soc. 285 (1984), 203-234.
13. H. N. Mhaskar and E. B. Saff, Where does the sup-norm of a weighted polynomial live? Constr. Approx. 1 (1985), 71-91.
14. H. N. Mhaskar and E. B. Saff, Where does the L_{p} norm of a weighted polynomial live? Trans. Amer. Math. Soc. 303 (1987), 109-124.
15. P. Nevai and Geza Freud, Orthogonal polynomials and Christoffel functions: A case study, J. Approx. Theory 48 (1986), 3-167.
16. P. Nevai (Ed.). "Orthogonal Polynomials, Theory and Practice," NATO ASI Series, Vol. 294, Kluwer, Dordrecht, 1990.
17. P. P. Petrushev and V. Popov, "Rational Approximation of Real Functions," Cambridge Univ. Press, Cambridge, 1987.
18. E. B. Saff and V. Totik, "Logarithmic Potentials with External Fields," Springer-Verlag. [in press]
19. V. Totik, "Weighted Approximation with Varying Weight," Lecture Notes in Mathematics, Vol. 1569, Springer-Verlag, Berlin, 1994.
