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We consider exponential weights of the form w :=e&Q on (&1, 1) where Q(x) is
even and grows faster than (1&x2)&$ near \1, some $>0. For example, we can
take

Q(x) :=expk((1&x2)&:), k�0, :>0,

where expk denotes the kth iterated exponential and exp0(x)=x. We prove Jackson
theorems in weighted Lp spaces with norm & fw&Lp(&1, 1) for all 0<p��. In part
II of this paper, we shall prove matching converse theorems. � 1997 Academic Press

1. STATEMENT OF RESULTS

There is a well developed theory of weighted polynomial approximation
for weights w: (&1, 1) � (0, �) that behave like Jacobi weights near \1
[6]. However, for weights that decay rapidly near \1, this theory does not
apply. In this paper, we prove Jackson theorems for even weights

w :=e&Q (1.1)

where Q: (&1, 1) � R is even and grows at least as fast as (1&x2)&$, some
$>0, near \1. That is, we estimate

En[ f ]w, p := inf
P # Pn

&( f&P)w&Lp(&1, 1) , (1.2)

0<p��, where Pn denote the polynomials of degree at most n.
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In some senses, these weights are closer to weights on R, such as
exp(&exp(x2)), the so-called Erdo� s weights on R, than to the classical
Jacobi weights on (&1, 1). This is borne out by the behaviour of the
orthogonal polynomials for these weights. For further orientation on this
topic, see [6, 8, 10, 11, 15, 16, 18].

Our methods are similar to those in [5], where Jackson theorems were
proved for Freud weights, and to the follow up paper [2], where Erdo� s
weights were treated. The approach involves approximating f by a spline
(or piecewise polynomial), representing the piecewise polynomial in terms
of certain characteristic functions, and then approximating the charac-
teristic functions (in a suitable sense) by polynomials. This method has the
advantage of involving only hypotheses on Q$, in contrast with the more
complicated approach via orthogonal polynomials and de la Vallee
Poussin sums, which typically involves hypotheses on Q" [6, 15].

To state our result, we need to define our class of weights, as well as
various quantities. First, we say that a function f : (a, b) � (0, �) is quasi-
increasing if _ C>0 such that

a<x<y<b O f (x)�Cf ( y).

Definition 1.1. Let w :=e&Q, where

(a) Q: (&1, 1) � R is even, is continuous, and has limit � at 1, and
Q$ is positive in (0, 1).

(b) xQ$(x) is strictly increasing in (0, 1) with right limit 0 at 0.

(c) The function

T(x) :=
Q$(x)
Q(x)

(1.3)

is quasi-increasing in (C, 1) for some 0<C<1.

(d) _ C1 , C2 , C3>0 such that

Q$( y)
Q$(x)

�C1 \Q( y)
Q(x)+

C2

, y�x�C3 . (1.4)

(e) For some $>0, 0<C<1, (1&x2)1+$ Q$(x) is increasing in
(C, 1). Then we write w # E.

The archetypal example of w # E is

w(x) :=wk, :(x) :=exp(&expk([1&x2]&:)), k�0, :>0, (1.5)

2 D. S. LUBINSKY
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where expk=exp(exp( } } } )) denotes the k th iterated exponential and
exp0(x)=x. For this weight, we see that

T(x)=2:x(1&x2)&1&: `
k&1

j=1

expj ([1&x2]&:), x>0.

It is not too difficult to see that we can choose C2>1 in (1.4) arbitrarily
close to 1 in this case, if k�1. More generally, the function T(x) measures
the regularity of growth of Q(x).

We need the condition that xQ$(x) is strictly increasing to guarantee the
existence of the Mhaskar�Rahmanov�Saff number au , the positive root of
the equation

u=
2
? |

1

0
autQ$(aut)

dt

- 1&t2
, u>0. (1.6)

If we used something other than au (such as Freud's quantity qu , the
root of u=quQ$(qu), or Q[&1](u), where Q[&1] is the inverse of Q on
(0, 1)), we could require less of xQ$(x), namely, that it be quasi-increasing
for x close to 1. However, this would complicate formulations and it is
unlikely that one can still describe the improvement in the degree of
aproximation near \an . For those to whom au is new, its significance lies
partly in the identity [12�14]

&Pw&L�(&1, 1)=&Pw&L�(&an , an) , P # Pn (1.7)

and the fact that an is the ``smallest'' such number.
Note that (1.4) on its own forces Q$(x) to grow faster than (1&x2)&1&$

near \1, for some $>0, so there is some overlap between it and condition
(e) of Definition 1.1. We need (e) only in Section 5, in constructing
polynomial approximations to w&1. We could replace (e) by the implicit
assumption that there exist polynomials Pn of degree O(n) such that

C1�Pn(x) w(x)�C2 , x # [&an , an].

In all probability, (a) to (d) of Definition 1.1 already guarantee the
existence of such polynomials, and possibly the methods of Totik [19] can
be used to verify this.

Our modulus of continuity involves two parts, a ``main part'' and a
``tail.'' The main part involves r th symmetric differences over the interval
[&a1�(2t) , a1�(2t)], and the tail involves an error of weighted polynomial
approximation over the remainder of (&1, 1). For h>0, an interval J, and
r�1, we define the r th symmetric difference as

2r
h ( f, x, J ) := :

r

i=0
\r

i+ (&1) i f \x+
rh
2

&ih+ , (1.8)

3EXPONENTIAL WEIGHTS ON [&1, 1], I
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provided all arguments of f lie in J, and 0 otherwise. Sometimes the
increment h will depend on x and the function

8t (x) :=�}1&
|x|
a1�t }+T(a1�t)

&1�2, x # (&1, 1). (1.9)

This is the case in our modulus of continuity

|r, p( f, w, t) := sup
0<h�t

&w2r
h8t (x) ( f, x, (&1, 1))&Lp( |x|�a1�(2t))

+ inf
P # Pr&1

&( f&P)w&Lp(a1�(4t)�|x|�1) (1.10)

and its averaged cousin

|� r, p( f, w, t) :=\1
t |

t

0
&w2r

h8t(x)( f, x, (&1, 1))& p
Lp( |x|�a1�(2t))

dh+
1�p

+ inf
P # Pr&1

&( f &P)w&Lp(a1�(4t)�|x|�1). (1.11)

(If p=�, |� r, p :=|r, p). One can think of h8t (x) as a suitable replacement
for the factor h - 1&x2 that appears in the Ditzian�Totik modulus of
continuity.

The inf in the tail is at first disconcerting, but note that it is over polyno-
mials of degree at most r&1, not n. Its presence ensures that for f # Pr&1 ,
|r, p( f, w, t)#0. It also reflects the inability of weighted polynomials Pnw
to approximate well beyond the interval [&an , an]. For classical Jacobi
weights, the interval [&an , an] is essentially [&(1&n&2), 1&n&2] and
the length of the remaining subintervals of [&1, 1], namely n&2, is negli-
gible. However, for our weights, an may be significantly smaller, and the
``tail'' interval cannot be ignored. For example, for wk, : of (1.5) with k�1,

1&ant(logk n)&1�:,

where logk=log(log( } } } (log(} }))) denotes the k th iterated logarithm. Here
and in the remainder of the article

cntdn

means that there exist C1 , C2>0 such that

C1�cn �dn�C2

for the relevant range of n. Similar notation is used for functions and
sequence of functions.
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We remark that we could probably replace a1�(2t) in the above definition
of our moduli of continuity with a1�t&C1 t�- T(a1�t), which is somewhat
larger, since, as we shall see in Section 2,

a1�t&a1�(2t)�C1�T(a1�t)rt�- T(a1�t).

Likewise, we could probably replace a1�(4t) in the moduli with the some-
what larger a1�t&C2t�- T(a1�t), with suitably chosen Cj , j=1, 2. However,
the resulting moduli are probably equivalent to those above, and the extra
complications and hypotheses on the weight are not worth the effort.

The moduli of continuity are rather difficult to assimilate (as is the case
with all their cousins [6] for weighted approximation on R). A good way
to view the modulus is that for purposes of approximation by polynomials
of degree at most n, essentially t=1�n, the main part is taken over the
range [&an�2 , an�2], and the tail is taken over [&1, 1]"[&an�4 , an�4].
Moreover, the function 8t (x) describes the improvement in the degree of
approximation in the range [x: a:n�|x|�an�2], any fixed : # (0, 1

2), in
much the same way that - 1&x2 does for Jacobi weights on [&1, 1]. In
particular for x over this range, 8t (x)tT(an)&1�2 � 0, n � �.

Our main result is:

Theorem 1.2. Let w :=e&Q # E. Let r�1 and 0<p��. Then for
f: (&1, 1) � R for which fw # Lp(&1, 1) (and for p=�, we require f to be
continuous and fw to vanish at \1), we have for n�C3

En[ f ]w, p�C1|� r, p \ f, w,
C2

n +�C1|r, p \ f, w,
C2

n + , (1.12)

where Cj , j=1, 2, 3, do not depend on f or n.

We note that the result may be easily extended to hold for n�r&1. For
a proof of this for the range C3�n�r&1 in the related case of Freud
weights, see [5]. The proof is exactly the same here.

Unfortunately, the moduli above are not obviously monotone increasing
in t, so we also present a result involving the increasing modulus

|*r, p ( f, w, t) := sup

0<{�L
0<h�t

&w2r
{h8h(x) ( f, x, (&1, 1))&Lp ( |x|�a1�(2h))

+ inf
P # Pr&1

&( f &P)w&Lp (a1�(4t)�|x|�1). (1.13)

Here L is a (large enough) number independent of f, t.

5EXPONENTIAL WEIGHTS ON [&1, 1], I
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Theorem 1.3. Under the hypotheses of Theorem 1.2,

En[ f ]w, p�C1|*r, p \ f, w,
C2

n + , (1.14)

n�C3 , where Cj , j=1, 2, 3, do not depend on f or n.

The moduli of continuity will be analyzed in part II of this paper, and
in particular the relationship to K-functionals� realization functionals will
be discussed. These have the consequence that we can dispense with the
constant C2 inside the moduli in (1.12) but this requires extra hypotheses
on w, namely, a Markov�Bernstein inequality.

The paper is organised as follows: In Section 2, we present some techni-
cal details related to Q, au , and so on. In Section 3, we present estimates
involving differences. In Section 4, we obtain polynomial approximations
to w&1 over suitable intervals, and then in Section 5, we present our crucial
approximations to characteristic functions. We prove Theorem 1.2 in Sec-
tion 6 and Theorem 1.3 in Section 7. Moreover, we discuss some further
simplification of the modulus |*r, p in Section 7.

At a first reading, the reader should first read Section 6 and then Sec-
tions 4 and 5. The technical Sections 2 and 3 can be read last.

We close this section with a little more notation. Throughout,
C, C1 ,C2 , ... denote positive constants independent of n, x and P # Pn . The
same symbol does not necessarily denote the same constant in different
occurrences. We write C{C(L) to indicate that C is independent of L.
Moreover, when dealing with, for example, x, y # (C, 1), it is taken as
understood that C<1. In the sequel, we assume that w=e&Q # E, except
that we shall not use condition (e) of Definition 1.1 unless specified.

2. TECHNICAL LEMMAS

In this section, we shall assume w # E, except that we shall not use condi-
tion (e) of Definition 1.1.

Lemma 2.1. (a) For some Cj , j=1, 2, 3, and s�r�C3 ,

\s
r+

C2T(r)

�
Q(s)
Q(r)

�\s
r+

C1T(s)

. (2.1)

Moreover,

\s
r+

C2 T(r) T(s)
T(r)

�
Q$(s)
Q$(r)

�
T(s)
T(r) \

s
r+

C1T(s)

. (2.2)

6 D. S. LUBINSKY



File: 640J 308707 . By:DS . Date:22:09:97 . Time:07:22 LOP8M. V8.0. Page 01:01
Codes: 1667 Signs: 615 . Length: 45 pic 0 pts, 190 mm

(b) For some Cj , j=1, 2, 3 and x # (C1 , 1),

T(x)�
C2

1&x
; (2.3)

Q( j )(x)�
C2

(1&x)C3+j , j=0, 1. (2.4)

(c) Given $>0, there exists C such that

T( y)tT \y \1&
$

T( y)++ , y�C. (2.5)

Proof. (a) First, (2.1) follows from the fact that for s�r�C3 ,

log
Q(s)
Q(r)

=|
s

r
T(t) dtt|

s

r

T(t)
t

dt

and the fact that T is quasi-increasing. Then the identity Q$(u)=T(u) Q(u)
gives (2.2).

(b) Since Q is increasing, we can assume that C2>1 in (1.4). Then
writing C2=1+$, $>0, we have

Q$( y)
Q( y)1+$�C1

Q$(x)
Q(x)1+$ , y�x�C3 .

Then as Q(1)=�, we obtain

C1

Q$(x)
Q(x)1+$ (1&x)�|

1

x

Q$( y)
Q( y)1+$ dy=

1
$Q(x)$

so

T(x)=
Q$(x)
Q(x)

�
C2

1&x
.

Integrating yields

Q(x)�C3(1&x)&C2

7EXPONENTIAL WEIGHTS ON [&1, 1], I
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and so

Q$(x)=Q(x) T(x)�C3(1&x)&1&C2.

(c) We can reformulate (1.4) as

T( y)
T(x)

�C1 \Q( y)
Q(x)+

C2&1

.

Hence for x=y(1&$�T( y)), the quasi-increasing nature of T gives

C4�
T( y)
T(x)

�C1 exp \(C2&1) |
y

x

Q$(t)
Q(t)

dt+
=C1 exp \(C2&1) |

y

x
t

T(t)
t

dt+�C1 exp \C5T( y) log
y
x+�C6 .

Recall here that T( y) is large for y close to 1. K

Next, some properties of au :

Lemma 2.2. (a) au is uniquely defined and continuous for u # (0, �) and
is a strictly increasing function of u.

(b) For u�C,

Q$(au)tuT(au)1�2; (2.6)

Q(au)tuT(au)&1�2. (2.7)

(c) Given fixed ;>0, we have for large u,

T(a;u)tT(au). (2.8)

(d) Given fixed :>1,

a:u

au
&1t

1
T(au)

. (2.9)

(e) If :>1, then for large enough u,

Q(a:u)
Q(au)

�C7>1. (2.10)

8 D. S. LUBINSKY
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(f) For some Cj , j=8, 9, ... 12, u�C8 , and L�1,

exp \C12

log(C11L)
T(au) +�

aLu

au
�1+C10

log(C9L)
T(aLu)

. (2.11)

(g) If C2 is as in (1.4),

T(au)�C6 u2([C2&1]�[C2+1])=C6 u2(1&$) (2.12)

some $>0.

Proof. (a) The function u � au is the inverse of the strictly increasing
continuous function

a �
2
? |

1

0
atQ$(at)

dt

- 1&t2

dt, a # (0, 1),

which has right limit 0 at 0. (Note that this function is continuous even if
Q$ is not.) We claim also that the function has limit � as a � 1&. For, if
a, t�C, (2.4) gives

Q$(at)�C1(1&at)&C3&1.

So the assertion follows and hence au is defined for all u # (0, �).

(b) For u so large that T(au)>2, we have

u
auQ$(au)

=
2
? _|

1&1�T(au)

0
+|

1

1&1�T(au)&
au tQ$(aut)
au Q$(au)

dt

- 1&t2

�
2
?

T(au)1�2 |
1&1�T(au)

0

auQ$(aut)
auQ$(au)

dt+
2
? |

1

1&1�T(au)

dt

- 1&t2

�
2
?

T(au)1�2 Q(au)&Q(0)
au Q$(au)

+
4
?

T(au)&1�2

�
4
?

T(au)1�2 Q(au)
auQ$(au)

+
4
?

T(au)&1�2�
12
?

T(au)&1�2.

Here we also need u so large that Q(au)�|Q(0)| and au� 1
2. So we have

au Q$(au)�
?
12

uT(au)1�2.

9EXPONENTIAL WEIGHTS ON [&1, 1], I
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In the other direction, (2.2) gives, for large u,

u
auQ$(au)

=
2
? |

1

0

autQ$(aut)
auQ$(au)

dt

- 1&t2

�C1 |
1

1�2

T(aut)
T(au)

tC1T(au) dt

- 1&t2

�C2

T \au \1&
1

T(au)++
T(au) \1&

1
T(au)+

C1T(au)

|
1

1&1�T(au)

dt

- 1&t2

�C3T(au)&1�2.

Here we have used (2.5) and the quasi-monotonicity of T. So we have (2.6).
Then (2.7) follows from the definition of T.

(c) We can assume ;>1. Then by (2.7), and quasi-monotonicity
of T,

C1�
T(a;u)
T(au)

t_ ;u
Q(a;u)&

2

<_ u
Q(au)&

2

�;2.

(d) Now for fixed :>1,

:u=
2
? |

1

0
a:utQ$(a:u t)

dt

- 1&t2

�
2
? |

1

au�a:u

auQ$(au)
dt

- 1&t2

�C2uT(au)1�2 \1&
au

a:u+
1�2

by (2.6). Hence

1&
au

a:u
�C3 �T(au).

10 D. S. LUBINSKY



File: 640J 308711 . By:DS . Date:22:09:97 . Time:07:22 LOP8M. V8.0. Page 01:01
Codes: 2116 Signs: 672 . Length: 45 pic 0 pts, 190 mm

In the other direction,

:u=
2
? _|

au�a:u

0
+|

1

au�a:u& a:utQ$(a:u t)
dt

- 1&t2

�
2
? |

au �a:u

0
a:utQ$(a:u t)

dt

�1&\a:ut
au +

2
+

2
?

a:uQ$(a:u) |
1

au�a:u

dt

- 1&t

�
au

a:u _
2
? |

1

0
ausQ$(aus)

ds

- 1&s2&+
4
?

a:uQ$(a:u) \1&
au

a:u+
1�2

�u+CuT(au)1�2 \1&
au

a:u+
1�2

by (2.6) and (2.8). Then

1&
au

a:u
�\:&1

C +
2 1

T(au)
.

(e) For large enough u,

Q(a:u)
Q(au)

=exp \|
a:u

au

t
T(t)

t
dt+

�exp \C6 T(au) log \a:u

au ++�exp(C7)>1,

by (d) of this lemma.

(f) From (1.4) with y=aLu and x=au ,

T(aLu)
T(au)

�C \Q(aLu)
Q(au) +

C2&1

. (2.13)

This forces C2>1, as the left-hand side �� as L � �. Then with the
constants in t independent of L, (2.7) gives

Q(aLu)
Q(au)

t
LuT(aLu)&1�2

uT(au)&1�2

�CL \Q(aLu)
Q(au) +

&(C2&1)�2

(by (2.13))

O
Q(aLu)
Q(au)

�CL2�(1+C2).

11EXPONENTIAL WEIGHTS ON [&1, 1], I
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Then using (2.1),

\aLu

au +
C1T(aLu)

�CL2�(1+C2)

and the right inequality in (2.11) follows if we use u&1�log u, u�1. In
the other direction, (2.1) and then (2.7) give

aLu

au
�\Q(aLu)

Q(au) +
1�(C2 T(au))

�\C1

LuT(aLu)&1�2

uT(au)&1�2 +
1�(C2T(au))

�(C3 L)1�(C2T(au)).

Here the constants are independent of L and u. Then the left inequality in
(2.11) follows.

(g) We apply (1.4) with y=au and x=C3 , so that

Q$(au)�C4Q(au)C2

O uT(au)1�2�C5(uT(au)&1�2)C2.

Rearranging this gives (2.12). K

We finish this section with an infinite finite-range inequality: We provide
a proof, as those in the literature [8, 10, 12�14, 18] do not quite match our
needs�hypotheses:

Lemma 2.3. Let 0<p��, s>1. Then for some C1 , C2>0, n�1, and
P # Pn ,

&Pw&Lp(&1, 1)�C1 &Pw&Lp(&asn , asn). (2.14)

Moreover,

&Pw&Lp( |x| �asn)�C1 e&C2nT(an)&1�2 &Pw&Lp(&asn , asn). (2.15)

Remark. Note that (2.12) shows that for some C3>0, and large
enough n,

nT(an)&1�2�nC3.

Proof. We may change Q in a closed subinterval of (&1, 1) without
affecting (2.14), (2.15) apart from increasing the constants. Note too that
the affect on au is marginal and is absorbed into the fact that s>1. Thus
we may assume that Q$ is continuous in (&1, 1). This and the strict

12 D. S. LUBINSKY
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monotonicity of tQ$(t) in (0, 1) allow us to apply existing sup-norm
inequalities to deduce that for P # Pn ,

&Pw&L�(&1, 1)�C &Pw&L�[&an , an] .

For a precise reference, see [8, Theorem 4.5], for example. Moreover, the
proof of Lemma 6.1 in [10, pp. 57�58] gives without change

|Pw| p (an x)�
1
?

2x
x&1 |

1

&1
|Pw| p (ant) dt, x # (1, 1�an). (2.16)

Let (x) denote the greatest integer �x. Let $ be small and positive, let
l :=($n) and let Tl (x) denote the Chebyshev polynomial of degree l.
Using the identity

Tl (x)= 1
2 [(x+- x2&1)l+(x&- x2&1) l], x>1, (2.17)

it is not difficult to see that

Tl (x)�
1
2

exp \ l

- 2
- x&1+, x # \1,

9
8+ . (2.18)

We now let m :=n+l=n+($n) , m$ :=n+2l=n+2($n) and apply
(2.16) to P(x) Tl (x�am) # Pm . We obtain for x>1,

|Pw| p (amx)�Tl (x)&p 1
?

2x
x&1 |

1

&1
|Pw| p (am t) dt.

Replacing amx by y and integrating from am$ to 1 gives

|
1

am$

|Pw| p ( y) dy�\|
am

&am

|Pw| p (s) ds+\2
? |

1

am$

y
y&am

Tl \ y
am+

&p dy
am+ .

Here using (2.18),

|
1

am$

y
y&am

Tl \ y
am+

&p dy
am

=|
1�am

am$ �am

x
x&1

Tl (x)&p dx

�C \|
9�8

am$�am

1
x&1

exp \&
lp

- 2
- x&1+ dx+

�C1 log \ 9�8
am$ �am&1+ exp \&C2 l \am$

am
&1+

1�2

+
�C3 exp (&C4nT(an)&1�2).

13EXPONENTIAL WEIGHTS ON [&1, 1], I
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Here we have used (2.9) and our choice of l. Now if $ is small enough,
m$�sn. Then (2.15) follows easily and in turn yields (2.14). K

3. TECHNICAL LEMMAS ON 8t

In this section, we present various estimates involving the function 8t(x).
Throughout, we assume that w=e&Q # E, except that we do not assume (e)
of Definition 1.1. Our first lemma concerns the function

8t(x)=�}1&
|x|
a1�t}+T(a1�t)

&1�2, x>0.

Lemma 3.1. (a) There exist C1 , C2 independent of s, t, x, such that for
0<t<s�C1 ,

8s(x)�C2 8t (x), |x|�a1�s . (3.1)

(b) There exists C1 such that for 0<s�C1 and s�2�t�s,

8s(x)t8t (x), |x|<1. (3.2)

Proof. (a) Let $>0 be fixed. First for

|x|�a1�s(1&$�T(a1�s)) � 1&|x|�a1�s�$�T(a1�s)

we have

8s(x)t�1&
|x|
a1�s

��1&
|x|
a1�t

�8t (x).

Next, for

a1�s(1&$�T(a1�s))�|x|�a1�s O 1&|x|�a1�s�$�T(a1�s)

we have

8s(x)tT(a1�s)
&1�2.

This is bounded by C8t(x) if |1&|x|�a1�t |�$�T(a1�s), for a fixed $>0.
Otherwise, we have |1&|x|�a1�s|�$�T(a1�s) and |1&|x|�a1�t|�$�T(a1�s), so

} 1&
a1�t

a1�s }= }\1&
|x|
a1�s+&

|x|
a1�s \

a1�t

|x|
&1+ }

�C1$�T(a1�s).

14 D. S. LUBINSKY
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If $ is small enough, we deduce from (2.9) and (2.8) that

T(a1�t)tT(a1�s),

so

8s(x)tT(a1�s)
&1�2

tT(a1�t)
&1�2

t8t(x)

and again (3.1) follows.

(b) Now

} 1&
|x|
a1�t }= } 1&

|x|
a1�s

+
|x|
a1�s \1&

a1�s

a1�t+}
� }1&

|x|
a1�s }+O \ 1

T(a1�s)+ .

Then we obtain for |x|<1

8t(x)�C8s(x).

The converse direction is similar. K

Lemma 3.2. (a) Let L>0. Uniformly for u�1, and |x|, | y|�au , such
that

|x&y|�
L
u �}1&

| y|
au } , (3.3)

we have

w(x)tw( y) (3.4)

and

1&
|x|
a2u

t1&
| y|
a2u

. (3.5)

(b) Let L>0. For t # (0, t0), |x|, | y|�a1�(Lt) such that

|x&y|�Lt8t(x), (3.6)

we have (3.4) and

8t(x)t8t ( y). (3.7)

15EXPONENTIAL WEIGHTS ON [&1, 1], I
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Proof. (a) It suffices to prove (3.4), (3.5) for large u. Moreover, (3.4)
and (3.5) are immediate for |x|�C<1 and large u. Let us suppose that
C�x�y�x+(L�u) - |1&| y|�au |. Then as Q$(s) is quasi-increasing for s
close to 1,

0�Q( y)&Q(x)�C1Q$( y)( y&x).

We have then (3.4) for

Q$( y)( y&x)=O(1). (3.8)

We shall show that

Q$( y) �}1&
y
au}�C2u, (3.9)

so that (3.3) implies (3.8) and hence (3.4). If first, 0<y�au�2, then

Q$( y) � }1&
y
au}�C3Q$( y)�C4auQ$( y) |

1

1�2

dt

- 1&t2

�C5 |
1

1�2
autQ$(aut)

dt

- 1&t2
�C6 u.

If, on the other hand, au �2�y�au ,

Q$( y) �}1&
y
au }�C7 |

1

y�au

autQ$(aut)
dt

- 1&t2
�C8u.

So we have (3.9) in all cases and hence (3.4). We proceed to prove (3.5).
Now from (3.3) and as y�au ,

1�
1&x�a2u

1&y�a2u
=1+

y&x
a2u(1&y�a2u)

=1+O \ 1

u - 1&y�a2u
+

=1+O \ 1

u - 1&au�a2u
+=1+O \T(au)1�2

u +=1+o(1),

by (2.9) and (2.12).

(b) Write Lt=1�u, so that |x|, | y|�a1�(Lt)=au , and we can recast
(3.6) as

|x&y|�C1

1
u _�1&

|x|
au

+T(au)&1�2&�C2

1
2u �1&

|x|
a2u

16 D. S. LUBINSKY
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by (2.8), (2.9), and (3.2). Then (a) gives (3.4), and (3.7) follows easily
from (3.5). K

4. POLYNOMIAL APPROXIMATION OF w&1

The result of this section is:

Theorem 4.1. Assume w=e&Q # E. For n�1, there exist polynomials
Gn of degree at most Cn , such that

0�Gn(x)�w&1(x), x # (&1, 1) (4.1)

and

Gn(x)tw&1(x), |x|�an . (4.2)

We remark that this does not follow from existing results in the literature
on approximation by weighted polynomials of the form Pn(x) w(an x) [19]
as our weights do not satisfy their hypotheses. The methods of Totik [19]
can be applied to give sharper results but we base our proof on a method
involving entire functions. It is only in the following result that we need
condition (e) of Definition 1.1.

Lemma 4.2. There exists an even function

G(z)= :
�

j=0

gjz2j, gj�0 \j, (4.3)

analytic in [z: |z|�1], such that

G(x)tw&1(x), x # (&1, 1). (4.4)

Proof. This is different from that in [10, p. 107ff] because of the
different hypotheses on Q, so we include the details. Consider the transfor-
mation

x :=x(r) :=� r
r+1

, r # (0, �).

This is equivalent to

r=
x2

1&x2 , x # (0, 1).

17EXPONENTIAL WEIGHTS ON [&1, 1], I
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Set

Q1(r) :=Q(x(r))=Q \� r
r+1+, r # (0, �).

We shall apply a theorem of Clunie�Ko� vari [1] to

,(r) :=eQ1(r).

Straightforward calculations show that

x$(r)=
1

2x(r)(r+1)2

and

Q$1(r)=
Q$(x(r))

2x(r)(r+1)2 .

Next,

r+1=
1

1&x(r)2 ,

so if $ is as in Definition 1.1(e),

(r+1)1&$ Q$1(r)=(r+1)&1&$ Q$(x(r))
2x(r)

=(1&x(r)2)1+$ Q$(x(r))
2x(r)

is quasi-increasing for large r. Now set

�(r) :=rQ$1(r).

By the quasi-increasing nature of r1&$Q$1(r), we have for large enough *
and some C independent of *,

�(*r)&�(r)=[(*r)$ (*r)1&$ Q$1(*r)&rQ$1(r)]

�r1&$Q$1(r)[(*r)$ C&r$]�1

if * is large enough, and r�r0 . Moreover,

�(r)=
rQ$(x(r))

2x(r)(r+1)2=
x(r) Q$(x(r))

2(r+1)
=

x(r)
2

Q$(x(r))(1&x(r)2)

18 D. S. LUBINSKY
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is increasing in r for large r, since x(r) and Q$(x(r))(1&x(r)2) are.
Moreover, ,(r) :=eQ1(r) admits the representation

,(r)=,(1) exp \|
r

1

�(s)
s

ds+, r�1.

By a theorem of Clunie and Ko� vari [1, Theorem 4, p. 19], there exists
entire

H(r)= :
�

j=0

hjr j, hj�0 \j

such that

H(r)t,(r)=exp \Q \� r
r+1++, r>r0 .

Then assuming h0>0 as we can, we see that this holds for r�0. Then

G(x) :=H \ x2

1&x2+=H(r)texp \Q \� r
r+1++=exp(Q(x))

satisfies (4.4) and as

G(x)=H \ :
�

j=1

x2j+
we also obtain (4.3). K

Proof of Theorem 4.1. Let J be a positive even integer (to be chosen
large enough later) and let Tn(x) denote the classical Chebyshev polyno-
mial on [&1, 1]. Let Gn denote the Lagrange interpolant to G at the zeros
of Tn(x�an)J so that Gn has degree at most Jn&1 and admits the error
representation

(G&Gn)(x)=
1

2?i |1

G(t)
t&x \

Tn(x�an)
Tn(t�an)+

J

dt

for x inside 1. We shall choose 1 to be the ellipse with foci at \an ,
intersecting the real and imaginary axes at (an�2)( \+\&1) and
(an�2)( \&\&1), respectively. Here we shall choose for some fixed small
=>0,

\ :=1+\ =
T(an)+

1�2

.

19EXPONENTIAL WEIGHTS ON [&1, 1], I
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Since G has non-negative Maclaurin series coefficients and satisfies (4.4),
we deduce that

$n :=&1&Gn �G&L�[&an , an]�C1

w&1((an�2)( \+\&1))
( \&1)2

1
mint # 1 |Tn(t�an)|J .

Now for t # 1, we can write t=(an�2)(z+z&1), where |z|=\, so that

|Tn(t�an)|=|Tn(
1
2(z+z&1))=| 1

2 (zn+z&n)|

� 1
2 ( \n&\&n)�exp(C2nT(an)&1�2).

(Recall that nT(an)&1�2 � � as n � � and in fact grows faster than a
power of n). It is important here that C2 is independent of J. Next

an

2
( \+\&1)�an \1+C3

=
T(an)+�a2n

if = is small enough, and n is large enough, by (2.9). Then

w&1 \an

2
( \+\&1)+�w&1(a2n)�exp(C4nT(an)&1�2),

where again it is important that C4 is independent of J. Since
( \&1)&2

tT(an) grows no faster than a power of n, we see that choosing
J large enough gives

$n�CT(an) exp(nT(an)&1�2 (C4&C2 J)) � 0, n � �.

Then (4.4) gives (4.2).
We now turn to proving (4.1). It suffices to prove

0�Gn�Cw&1

for then (4.1) follows on multiplying Gn by a suitable constant (and (4.2)
is still valid)). First, we can assume n is even (for odd n, we can use Gn+1)
so that Hn(x) :=Gn(- x) is a polynomial of degree at most Jn�2&1 (recall
that Tn and J are even) that interpolates to the function H(x) :=G(- x),
which is analytic in (&1, 1), at the Jn�2 zeros of Tn(- t�an)J that lie in
(0, a2

n). Thus Hn(x) is determined entirely by interpolation conditions. Let
#n denote the leading coefficient of Tn(x�- an). Then the usual derivative-
error formula for Hermite interpolation gives for x # (0, �) and some
! # (0, 1)

(H&Hn)(x)=#&J
n Tn \- x

an +
J H(Jn�2)(!)

(Jn�2)!
�0.

20 D. S. LUBINSKY
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(Recall that H is analytic and has non-negative Maclaurin series coef-
ficients.) So in (&1, 1),

Gn�G�Cw&1.

To show that Gn�0 in (&1, 1), we note that it is true in [&an , an] (this
follows from (4.2)) and we must establish it elsewhere. We use a zero coun-
ting lemma used to prove the Posse�Markov�Stieltjes inequalities [7, p. 30,
Lemma 5.3] (there the proof is for (&�, �), but the proof goes through
for (0, 1) with trivial changes). Now H is absolutely monotone in (0, 1) and
H&Hn has Jn�2 zeros in (0, a2

n]. If m is the number of zeroes of Hn(x) in
[a2

n , 1), Lemma 5.3 in [7, p. 30] gives

Jn
2

+m�deg(Hn)+1�
Jn
2

.

So m=0, that is, Hn has no zeros in (a2
n , 1). Thus Hn�0 there, so Gn�0

in (&1, 1). K

5. POLYNOMIALS APPROXIMATING
CHARACTERISTIC FUNCTIONS

Our Jackson theorem is based on polynomial approximations to the
characteristic function /[a, b] of an interval [a, b]. We believe the following
result is of independent interest:

Theorem 5.1. Let l be a positive integer. There exist C1 , J, n0 such that
for n�n0 and { # [&an , an], there exist polynomials Rn, { of degree at most
2lJn such that for x # (&1, 1),

|/[{, an]&Rn, {| (x) w(x)�w({)�C1 \1+
n |x&{|

- 1&|{|�a2n
+

&l

. (5.1)

We emphasise that the constants are independent of n, {, x. Our proof
will use polynomials from [9] built on the Chebyshev polynomials:

Lemma 5.2. There exist C1 , B, n1 , such that for n�n1 and |`|�cos ?�2n,
there exists a polynomial Vn, ` of degree at most n&1 with

&Vn, `&L�[&1, 1]=Vn, `(`)=1; (5.2)

|Vn, `(t)|�
B - 1&|`|

n |t&`|
, t # (&1, 1)"[`]. (5.3)

21EXPONENTIAL WEIGHTS ON [&1, 1], I
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Moreover,

Vn, `(t)�
1
2

, |t&`|�C1

- 1&|`|
n

. (5.4)

The constants are independent of n, `, t.

Proof. The assertions (5.2), (5.3) are Proposition 13.1 in [9]. The
estimate (5.4) follows from the classical Bernstein inequality. K

The polynomials Rn, { are determined as follows: Let us suppose that,
say,

a1�{�an .

Later on, we shall suppose that { exceeds a fixed positive constant. We
define

` :=
{

a2lJn
(5.5)

and if Gn are the polynomials of Theorem 4.1,

Rn, {(x) :=
�x

0 Gn(s) Vn, `(s�a2lJn) lJ ds
�{*

0 Gn(s) Vn, `(s�a2lJn) lJ ds
. (5.6)

The parameter {*>{ and J are defined as follows: Let M denote a positive
constant such that for, say, u�u0 ,

Q$(x)�MQ$(au), 1
2�x�a2u . (5.7)

The existence of such an M follows from (2.6), (2.8). We set

H :=H(n, {, l) :=
4ln

anQ$({) - 1&`
(5.8)

and if {=ar ,

{* :={*(n, {) :=min {a2r , an , {+2
an

n
- 1&` H log H= . (5.9)

The reason for this (complicated!) choice will become clearer later. We
assume that J�4 is so large that Gn has degree at most Jn&1, and also

J�32M, (5.10)

where M is as above. Note that then Rn, { has degree at most Jn+lJn�
2lJn. We first record some estimates of the terms in (5.6):

22 D. S. LUBINSKY
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Lemma 5.3. (a) For n�n1 , and C1�{�an , we have

w({) |
{*

0
Gn(s) Vn, ` \ s

a2lJn+
lJ

ds�
C2

n
- 1&`, (5.11)

where C2{C2(n, {).

(b) For x # ({, a2lJn),

|
a2lJn

x
Vn, ` \ s

a2lJn+
lJ�2

ds�
C1

n
- 1&` \1+

n |x&{|

- 1&` +
&l

(5.12)

and for x # (&a2lJn , {),

|
x

&a2lJn

Vn, ` \ s
a2lJn+

lJ�2

ds�
C1

n
- 1&` \1+

n |x&{|

- 1&` +
&l

. (5.13)

Here C1{C1(n, {).

Proof. (a) Let us denote the left-hand side of (5.11) by 1. By (4.2) and
(5.4),

1�C2 w({) |
{

{&(C3 �n) - 1&`
w&1(s) ds�

C4

n
- 1&`,

where we have used (3.4) of Lemma 3.2(a).

(b) These follow in a straightforward fashion from the estimates
(5.2), (5.3) and the fact that J�4. K

Now we begin the proof of Theorem 5.1. We first show that it suffices to
consider { in the range [S, an] for some fixed S<1.

Proof of Theorem 5.1 for |{|�S, where S<1 is fixed. Note first that
since for such {,

w(x)�w({)�w(0)�w(S), x # (&1, 1),

we must only prove there exists Rn, { of degree at most n such that

|/[{, an]&Rn, { | (x)�C1 \1+
n |x&{|

�1&
|{|
a2n
+

&l

,
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for |x|�1. Setting here ! :={�an , and s :=x�an , and Un, !(s) :=Rn, {(x)=
Rn, {(ans), we see that it suffices to show that

|/[!, 1](s)&Un, !(s)|�C2(1+n |s&!| )&l, s # [&2, 2].

We have used here that |!|�C<1, for large n. The existence of such
polynomials is classical. See for example [4]. One could also base them on
the Vn, ` above. K

It suffices to consider { # [S, an], where S is fixed. For, once this is
done, we have the result for all { # [0, an]. With the result for {�0, we set

Rn, &{(x) :=1&Rn, {(&x), x # (&1, 1).

It is not difficult to check the result for &{ from the corresponding result
for {, using the identity

/[&{, an](x)=1&/({, an](&x). K

In the sequel, we define Rn, { by (5.6)�(5.10).

It suffices to prove (5.1) for { # [S, an] and |x|�a2lJn . For then (5.1) for
this restricted range implies

"\1+_ n(x&{)

- 1&{�a2n
&

2

+
l

Rn, {(x)
w(x)
w({) "L�[&a2lJn , a2lJn]

�C3nC4,

where C4{C4(n, {). Since the polynomial on the left-hand side has
degree at most 2l+Jn+lJn�'2lJn, some fixed '<1, if l�2 and n is
large enough (as we can assume), then the infinite-finite range inequality
Lemma 2.3 gives

"\1+_ n(x&{)

- 1&{�a2n
&

2

+
l

Rn, {(x)
w(x)
w({) "L�(a2lJn�|x|�1

�C5 exp(&nC6).

Then (5.1) follows for |x|�a2lJn . K

We can now begin the proof of (5.1) proper. We consider five different
ranges of x: [0, {), [{, {*], ({*, an], (an , a2lJn], [&a2lJn , 0). Moreover, we
set

2(x) :=|/[{, an]&Rn, { | (x) w(x)�w({).
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File: 640J 308725 . By:DS . Date:22:09:97 . Time:07:22 LOP8M. V8.0. Page 01:01
Codes: 2412 Signs: 928 . Length: 45 pic 0 pts, 190 mm

Proof of (5.1) for x # [0, {). Here using (4.1), and then (5.11),

2(x)=
w(x) �x

0 Gn(s) Vn, `(s�a2lJn) lJ ds
w({) �{*

0 Gn(s) Vn, ` (s�a2lJn) lJ ds

�C
w(x) �x

0 w&1(s) Vn, `(s�a2lJn) lJ ds

(1�n) - 1&`

�C
�x

0 Vn, ` (s�a2lJn) lJ ds

(1�n) - 1&`

by the monotonicity of w. Then (5.13) gives the result. Note that uniformly
in { and n,

1&`=1&
{

a2lJn
t1&

{
a2n

. K

Proof of (5.1) for x # [{, {*). Here

2(x)=
w(x) �{*

x Gn(s) Vn, ` (s�a2lJn) lJ ds
w({) �{*

0 Gn(s) Vn, ` (s�a2lJn) lJ ds

�C
�{*

x exp(Q(s)&Q(x)) Vn, `(s�a2lJn) lJ ds

(an�n) - 1&`

by (4.1) and (5.11). Now for s # (x, {*), the property (5.7) of Q$ gives
(recall {=ar and {*�a2r)

Q(s)&Q(x)�MQ$(ar)(s&x)�MQ$({)(s&{).

Then using our bounds on Vn, ` in (5.2), (5.3), we have

2(x)�C1

�{*
x exp(MQ$({)(s&{)) min[1, Ba2lJn - 1&`�(n(s&{))]lJ ds

(a2lJn �n) - 1&`

=C1 B |
n({*&{)�Ba2lJn - 1&`

n(x&{)�Ba2lJn - 1&`
exp \a2lJn

an

4lMBu
H + min {1,

1
u=

lJ

du

�C2 |
(2�B) H log H

n(x&{)�Ba2lJn - 1&`
g(u) min {1,

1
u=

lJ�2

du

for say n�n1=n1(J, L) by (5.9) and where

g(u) :=exp \8lMBu
H + min {1,

1
u=

lJ�2

.
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We claim that if J is large enough,

g(u)�C3 , u # _0,
2
B

H log H& ,

with C3 independent of {, n. First we show that

H�e; H�eB�2 (5.14)

uniformly for { # [S, an] and n�n0(J, l ). Recall that B, J, M are inde-
pendent of l (see (5.3), (5.7), (5.10)). Next, from (3.9), for { # [S, an],

Q$({) �1&
{

a2n
�C4n,

with C4{C4(n, {, l ). Then from (5.8),

H�
4l
C4 \

1&{�a2n

1&{�a2lJn+
1�2

.

Here for n�n0(J, l), we see using the inequality 1&u�log(1�u), u # (0, 1],
we obtain

1&{�a2lJn

1&{�a2n
=1+

{
a2n

1&a2n�a2lJn

1&{�a2n

�1+
log (a2lJn �a2n)

1&an�a2n
�1+C5 log(ClJ ),

by the left inequality in (2.11) and (2.9). Thus

H�C6 l�- log(ClJ ).

It follows that we obtain (5.14) if we choose l charge enough. Then from
(5.14) follows

g(u)�exp \8lMB
e +, u # (0, 1].

Next, by elementary calculus, g has at most one local extremum in [1, �),
and this is a minimum. Thus in any subinterval of [1, �), g attains
its maximum at the endpoints of that interval. In particular, we must
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only check that g((2�B)H log H ) is bounded. (Note here that by (5.14),
(2�B)H log H�e). But

g \2
B

H log H+=exp \l log H {16M&
J
2=&

Jl
2

log _2
B

log H&+�1

as J�32M and H�eB�2. So we have

2(x)�C7 |
�

n(x&{)�Ba2lJn - 1&`
min {1,

1
u=

lJ�2

du

and then (5.1) follows as J�4. K

Proof of (5.1) for x # ({*, an]. Here

2(x)=
w(x) �x

{* Gn(s) Vn, `(s�a2lJn) lJ ds
w({) �{*

0 Gn(s) Vn, `(s�a2lJn) lJ ds

�C1

�x
{* exp(Q(s)&Q(x)) Vn, `(s�a2lJn) lJ ds

(1�n) - 1&`

�C2

n

- 1&` \eQ([{+x]�2)&Q(x) |
[{+x]�2

{*
Vn, ` \ s

a2lJn+
lJ

ds

+|
x

[{+x]�2
Vn, ` \ s

a2lJn+
lJ

ds+
�C3 \eQ([{+x]�2)&Q(x) _1+

n({*&{)

an - 1&`&
&l

+_1+
n(x&{)

an - 1&`&
&l

+
(5.15)

by (5.12). Here if {*>[{+x]�2, the first term in the last two lines can be
dropped and we already have the desired estimate. In the contrary case, we
must estimate the first term. We note that we can assume that {*<an , for
otherwise the current range of of x is empty. We consider two subcases
(recall the definition (5.9) of {*):

(I) {*={+2(an�n) - 1&` H log H

We shall show that

1 :=
Q(x)&Q([{+x]�2)

l log(1+n(x&{)�an - 1&`)
�1. (5.16)
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Then the first part of the first term in the right-hand side of (5.15) already
gives the desired estimate; the second part of that first term can be
bounded above by 1. Now since tQ$(t) is increasing,

Q$(t)�
s
t

Q$(s)�
1
2

Q$(s), t�s�
1
2

.

Hence

Q(x)&Q \{+x
2 +�

1
2

Q$({) \x&{
2 + .

Setting

u :=
n(x&{)

an - 1&`
,

we have

1�
Q$({) an - 1&` u

4nl log(1+u)
=

u
H log(1+u)

.

But

u�
n({*&{)

an - 1&`
=2H log H.

Recall from (5.14) that H�e. Then since the function u�log(1+u) is
increasing for u�2H log H�e, we obtain

1�
2H log H

H log(1+2H log H)
.

Using the inequality 1+2t log t�t2, t�1, we have

1�
2 log H
log H 2 =1.

So we have (5.16) and the result.

(II) {*=a2r

In this case, from (2.9),

{*&{=a2r&art
ar

T(ar)
t

1
T({)

.
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Now if {*�x�{(1+1�T({)), then

x&{t{*&{

and the second part of the first term in the right-hand side of (5.15) already
gives the desired estimate (the first part of the first term can be bounded
above by 1). If x>{(1+1�T({)), then

x
([x+{]�2)

�1+
1

2T({)+1
�1+

1
3T({)

for { close to 1, so from (2.1),

Q(x)
Q([x+{]�2)

�\1+
1

3T({)+
C2 T([x+{]�2)

�C3>1.

(Recall that [x+{]�2>{). Then

eQ([{+x]�2)&Q(x) _1+
n({*&{)

an- 1&`&
&l

�e&C4Q(x) _1+
C5 n

anT({) - 1&`&
&l

.

This will admit the desired estimate, namely,

C6 _1+
n(x&{)

an - 1&`&
&l

provided

eC4 Q(x)�l 1
T({)

�C7(x&{).

But

eC4 Q(x)�l 1
T({)

�C8

eC4Q(x)�l

T(x)
�C9Q(x)�C10>C10(x&{)

by (2.7), (2.12) and the growth (2.4) of Q, so we have the desired
estimate. K
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Proof of (5.1) for x # (an , a2lJn]. Here, much as in the previous range,

2(x)=
w(x) �x

0 Gn(s) Vn, `(s�a2lJn) lJ ds
w({) �{*

0 Gn(s) Vn, `(s�a2lJn) lJ ds

�C2

n

- 1&` \eQ([{+x]�2)&Q(x) |
[{+x]�2

0
Vn, ` \ s

a2lJn+
lJ

ds

+|
x

[{+x]�2
Vn, ` \ s

a2lJn+
lJ

ds+
�C3 {eQ([{+x]�2)&Q(x)+_1+

n(x&{)

an - 1&`&
&l

= .

We must show that the first term on the last right-hand side admits a
bound that is a constant multiple of the second term on the last right-hand
side. Let us write x=av (so v�n) and [{+x]�2=au (so that u<v). If first
u�n�2, then

Q(x)&Q \{+x
2 +�C4Q$(an�2)({&x)

�C5

n
an

T(an)1�2 ({&x)�C6

n({&x)

an - 1&`

by (2.6), (2.9). In this case the result follows. If u<n�2,

Q(x)&Q \{+x
2 +�Q(an)&Q(an�2)

�C7Q(an)�C8nT(an)&1�2�C9 nC10

by (2.7), (2.10). Since

_1+
n(x&{)

an - 1&`&
&l

�n&C11

The result again follows. K

Proof of (5.1) for x # [&a2lJn , 0). Here using the evenness of w and
(4.1), (5.11) as before gives

30 D. S. LUBINSKY



File: 640J 308731 . By:DS . Date:22:09:97 . Time:07:22 LOP8M. V8.0. Page 01:01
Codes: 2252 Signs: 817 . Length: 45 pic 0 pts, 190 mm

2(x)=
w(x) �0

x Gn(s) Vn, `(s�a2lJn) lJ ds
w({) �{*

0 Gn(s) Vn, `(s�a2lJn) lJ ds

�C2

n

- 1&` \|
0

x
Vn, ` \ s

a2lJn+
lJ

ds+
�C3 _1+

n{

- 1&`&
&l

.

Here {t{+|x|=|x&{| and the result follows. K

6. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. Recall that our moduli of
continuity are

|r, p( f, w, t) := sup
0<h�t

&w2r
h8t(x)( f, x, [&1, 1])&Lp( |x|�a1�(2t))

+ inf
P # Pr&1

&( f&P) w&Lp(a1�(4t)�|x|�1)

and

|� r, p( f, w, t) :=\1
t |

t

0
&w2r

h8t(x)( f, x, [&1, 1])& p
Lp( |x|�a1�(2t))

dh+
1�p

+ inf
P # Pr&1

&( f&P) w&Lp(a1�(4t)�|x|�1) .

Of course |� r, p�|r, p . We need further moduli of continuity. If I is an
interval, and f : I � R, we define for t>0

4r, p( f, t, I ) := sup
0<h�t \|I

|2r
h( f, x, I )| p dx+

1�p

(6.1)

and its averaged cousin

0r, p( f, t, I ) :=\1
t |

t

0
|

I
|2r

s( f, x, I )| p dx ds+
1�p

. (6.2)

Note that for some C1 , C2 depending only on r and p (not on f, I, t),

C1�4r, p( f, t, I)�0r, p( f, t, I )�C2 . (6.3)
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See [17, p. 191]. For large enough n, we choose a partition

&an={0n<{1n< } } } <{nn=an (6.4)

such that if

Ikn :=[{kn , {k+1, n], 0�k�n&1, (6.5)

then uniformly in k and n,

|Ikn |t
1
n �1&

|{kn |
a2n

. (6.6)

( |I | denotes the length of the interval I.) We also set Inn :=<. There are
many ways to do this. For example, one can choose {0n :=&an and for
1�k�n, determine {kn by

|
{kn

{k&1, n

1

- 1&|s|�a2n

ds<|
an

&an

1

- 1&|s|�a2n

ds=
1
n

.

Let us set

In :=[&an , an]= .
n&1

k=0

Ikn (6.7)

and (/[a, b] denotes the characteristic function of [a, b])

%kn(x) :=/[{kn , an](x)=/�
n&1
i=k Iin

(x) (6.8)

We set

I*kn :=Ikn _ Ik+1, n , 0�k�n&1. (6.9)

By Whitney's theorem [17, p. 195], we can find for 0�k�n&1 a polyno-
mial pk of degree at most r, such that

& f&pk&Lp(I*kn)�C2 4r, p( f, |I*kn |, I*kn) (6.10)

with C2{C2( f, n, k, I*kn).
Now define an approximating piecewise polynomial�spline by

Ln[ f ](x) :=p0(x) %0n(x)+ :
n&1

k=1

( pk&pk&1)(x) %kn(x). (6.11)

We first show that Ln[ f ] is a good approximation to f :
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Lemma 6.1. Let 9n : [&an , an] � R be such that uniformly in n,

9n(x)t�1&
|x|
a2n

, x # [&an , an]. (6.12)

Then

&( f&Ln[ f ]) w&Lp[&1, 1]

�C1 {_n |
C2 �n

0
&w2r

h9n(x)( f, x, [&1, 1])& p
Lp[&an , an] dh&

1�p

+& fw&Lp(an�|x|�1)= . (6.13)

Here Cj{Cj ( f, n), j=1, 2. For p=�, we replace the pth root and integral
by sup0<h�C2n . Moreover, the constants are independent of [9n], depending
only on the constants in t in (6.12).

Proof. We first deal with p<�. Now

&( f&Ln[ f ]) w& p
Lp[&1, 1]= :

n&1

j=0

2jn+& fw& p
Lp(an�|x|�1) , (6.14)

where

2jn :=|
Ijn

| f&Ln[ f ]| p w p. (6.15)

Note that in ({jn , {j+1, n), Ln[ f ]=pj , so that

2jn=|
Ijn

| f&pj |
p w p

�&w& p
L�(Ijn) C p

2 4 p
r, p( f, |I*jn |, I*jn)

�&w& p
L�(I*jn) &w&1& p

L�(I*jn)

C3

|I*jn | |
|I*jn |

0
|

I*jn

|w2r
s( f, x, I*jn)| p dx ds,

(6.16)

by (6.2), (6.3). Now from (3.4) of Lemma 3.2(a),

&w& p
L�(I*jn ) &w&1& p

L�(I*jn )t1 (6.17)

uniformly in j and n. Moreover, uniformly in j, n, and x # I*jn ,

|I*jn |t
1
n �1&

|x|
a2n

t
1
n

9n(x).
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Then we can continue (6.16) as

2jn�
C4

|I*jn | |I*jn
|

|I*jn |

0
|w2r

s( f, x, I*jn )| p ds dx

=
C4

|I*jn | |I*jn

9n(x) |
|I*jn |�9n(x)

0
|w2r

t9n(x)( f, x, I*jn )| p dt dx

�C5n |
C6�n

0
|

I*jn

|w2r
t9n(x)( f, x, I*jn)| p dx dt. (6.18)

Adding over j gives

:
n&1

j=0

2jn�C5n |
C6 �n

0
|

In

|w2r
t9n(x)( f, x, [&1, 1])| p dx dt. (6.19)

This and (6.14) give the result. Note that we have effectively also shown
that

:
n&1

j=0

0r, p( f, |I*jn |, I*jn ) p w p({jn)

�C5 n |
C6 �n

0
|

In

|w2r
t9n(x)( f, x, [&1, 1])| p dx dt. (6.20)

For p=�, the proof is similar, but easier: We see that

&( f&Ln[ f ]) w& p
L�(&1, 1)

�max[ max
0�j�n&1

&( f&pj) w&L�(Ijn), & fw&L�(an�|x|�1)].

The rest of the proof is as before. K

Now we can define our polynomial approximation to f :

Pn[ f ] :=p0(x) Rn, {on
(x)+ :

n&1

k=1

( pk&pk&1)(x) Rn, {kn
(x). (6.21)

Note that this has been formed from Ln[ f ] by replacing the characteristic
function %kn(x)=/[{kn , an](x) with its polynomial approximation Rn, {kn

(x)
formed in the previous section.
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Lemma 6.2. Let [9n] be as in the previous lemma. Then

&(Ln[ f ]&Pn[ f ]) w&Lp( &1, 1)

�C1 {_n |
C2 �n

0
&w2r

h9n(x)( f, x, [&1, 1])& p
Lp[&an , an] dh&

1�p

+& fw&Lp(I*
0n )= .

(6.22)

For p=�, we replace the pth root and integral by sup0<h�C2 �n .

Proof. We see that if we define p&1(x)#0,

(Ln[ f ]&Pn[ f ])(x)

= :
n&1

k=0

( pk&pk&1)(x)(%kn(x)&Rn, {kn
(x)). (6.23)

We shall make substantial use of the following inequality: Let S be a poly-
nomial of degree at most r and [a, b] be a real interval. Then for all
x # [&1, 1],

|S(x)|�C(b&a)&1�p \1+
min[ |x&a| , |x&b|]

b&a +
r

&S&Lp[a, b] . (6.24)

Here C{C(a, b, x, S ) but C=C( p, r). This follows from standard
Nikolskii inequalities and the Bernstein�Walsh inequality. See for example
[17, p. 193]. Hence for x # [&1, 1], and 1�k�n&1,

| pk&pk&1 | (x)�C |Ikn |&1�p \1+
|x&{kn |

|Ikn | +
r

&pk&pk&1 &Lp(Ikn) .

This is still true for k=0 if we recall that p&1#0. Now for 1�k�n&1,
(6.10) gives

&pk&pk&1&Lp(Ikn)�C1 :
k

i=k&1

4r, p( f, |I*in | , I*in),

where C1{C1( f, k, n). This remains true for k=0 if we set

0r, p( f, |I*&1, n |, I*&1, n) :=4r, p( f, |I*&1, n |, I*&1, n) :=& f &Lp(I*on) .
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Since (see (3.5), (6.6)) uniformly in k, n, and x # [&1, 1],

1+
|x&{kn |

|Ikn |
t1+

|x&{k&1, n |
|Ik&1, n |

we obtain from Theorem 5.1, uniformly for 0�k�n&1 and x # [&1, 1],

|( pk&pk&1)(x)(%kn(x)&Rn, {kn
(x))|

w(x)
w({kn)

�C2 :
k

i=k&1

|Iin |&1�p \1+
|x&{in |

|Iin | +
r&l

0r, p( f, |I*in |, I*in). (6.25)

Here and in the sequel, we set |I&1, n | :=|I0, n | and {&1, n :={0, n . We con-
sider three different ranges of p:

(I) 0<p<1.

Here from (6.23) and then (6.25)

|
1

&1
( |Ln [ f ]&Pn[ f ]| w) p

� :
n&1

k=0
|

1

&1
( | pk&pk&1 | |%kn&Rn, {kn

| w) p

� :
n&1

k=&1

|Ikn |&1 0 p
r, p( f, |I*kn |, I*kn) w p({kn) |

1

&1 \1+
|x&{kn |

|Ikn | +
(r&l ) p

dx.

(6.26)

Here if (r&l ) p<&1,

|Ikn |&1 |
1

&1 \1+
|x&{kn |

|Ikn | +
(r&l ) p

dx�|
�

&�
(1+|u| )(r&l ) p du=: C3<�.

So

|
1

&1
( |Ln[ f ]&Pn[ f ]| w) p�C4 :

n&1

k=&1

0 p
r, p( f, |I*kn |, I*kn) w p({kn).

This is the same as our sum in (6.20)), except for the term for k=&1. So
the estimate (6.20) gives (6.22), keeping in mind our choice of
4r, p( f, |I*&1, n |, I*&1, n).
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(II) 1�p<�.

From (6.23), (6.25) and then Ho� lder's inequality,

[ |Ln[ f ]&Pn[ f ]| (x) w(x)] p

�C { :
n&1

k=&1

|Ikn |&1�p \1+
|x&{kn |

|Ikn | +
r&l

0r, p( f, |I*kn |, I*kn ) w({kn)=
p

�C :
n

k=&1

|Ikn |&1 \1+
|x&{kn |

|Ikn | +
(r&l ) p�2

0 p
r, p( f, |I*kn |, I*kn) w p({kn) } Sn(x) p�q,

(6.27)

where q=p�( p&1) and

Sn(x) := :
n

k=1
\1+

|x&{kn |
|Ikn | +

(r&l ) q�2

.

We shall show that if (r&l ) q�2<&1, then

sup
n�1

sup
x # [&1, 1]

Sn(x)�C1<�. (6.28)

Note that Sn(x) is a decreasing function of x for x�an={nn , so it suffices
to consider x # [0, an]. Recall that

|Ikn |t |Ik+1, n |t
1
n �1&

|{kn |
a2n

.

It is then not difficult to see that

Sn(x)�C2 n |
an

&an
\1+n

|x&u|

- 1&|u|�a2n
+

(r&l ) q�2 du

- 1&|u|�a2n

�C3n |
1

&1 \1+n
|x� &s|

- 1&s+
(r&l )q�2 ds

- 1&s
,

where x� :=x�a2n , so that

1&x� �1&an�a2n�C4 T(an)&1�C5n&2.
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We make the substitution (1&s)=(1&x� ) w to obtain

Sn(x)�C3 n - 1&x� |
2�(1&x� )

0 \1+n - 1&x�
|w&1|

- w +
(r&l )q�2 dw

- w

�C4n - 1&x� {|
1�2

0 _1+
n - 1&x�

- w &
(r&l ) q�2 dw

- w

+|
3�2

1�2
[1+n - 1&x� |w&1|](r&l ) q�2 dw

+|
2�(1&x� )

3�2
[1+n - (1&x� ) w](r&l ) q�2 dw

- w= .

(We can omit the third integral if 2�(1&x� )�3�2.) We now make the sub-
stitutions w=n2(1&x� ) v in the first integral, v=n - 1&x� (w&1) in the
second integral, and v=n2(1&x� ) w in the third integral. It is then not dif-
ficult to see that the resulting terms are bounded independent of n and x
if l is large enough. So we have (6.28). Then using this, integrating (6.27)
(we can assume that (r&l ) p�2<&1) and using (6.20) gives the result.

(III) p=�.

Now by (6.23), (6.25)

|Ln[ f ]&Pn[ f ]| (x) w(x)

�C :
n&1

k=0

| pk&pk&1 | (x) |%kn&Rn, {kn
| (x) w(x)

�C max
&1�k�n&1

0r, p( f, |I*kn |, I*kn ) w({kn) } :
n&1

k=0
\1+

|x&{kn |
|Ikn +

(r&l )

.

As before, the sum is bounded if l is large enough. Then we can continue
this as

�C1[ sup
0�k�n&1

sup
0<h�|I*kn |

&2r
h( f, x, I*kn) w&L�(I*kn)+& fw&L�(I*

0n)]

�C2[ sup
0�k�n&1

sup
0<h�C�n

&2r
h9n(x)( f, x, I*kn) w&L�(I*kn)+& fw&L�(I*

0n)]

�C3 [ sup
0<h�C�n

&2r
h9n(x)( f, x, [&1, 1]) w&L�(&an , an)+& fw&L�(I*

0n)]. K

We can now turn to the

Proof of Theorem 1.2. We do this for p<�; the case p=� is similar,
but much easier. Now recall that Rn, { has degree at most 2lJn, where J is
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as in Theorem 5.1. So Pn[ f ] has degree at most 2lJn+r. So, if M :=3lJ,
we have for large n

EMn[ f ]w, p�&( f&Pn[ f ]) w&Lp(&1, 1)

�C[&( f&Ln[ f ]) w&Lp(&1, 1)+&(Ln[ f ]&Pn[ f ]) w&Lp(&1, 1)]

�C1 {_n |
C2 �n

0
&w2r

h9n(x)( f, x, [&1, 1])& p
Lp(&an , an) dh&

1�p

+& fw&Lp(an(1&C2[nT(an)1�2]&1)�|x|�1)= . (6.29)

Here we have used Lemmas 6.1 and 6.2, and also (6.6), which implies that

|I*0n |t
1
n �1&

an

a2n
t

1
n

T(an)&1�2.

Next for

Mn�j<M(n+1) (6.30)

we write

n=}j,

where }=}( j, n). Note that

}=
n
j

�
1
M

, j � �. (6.31)

Let

t :=t( j)=
M
2j

.

From (6.30) and (6.31), we have for n�2

n�
j

M
=

1
2t

; n�
2
3

j
M

=
1
3t

.

We claim that for large enough j,

an(1&C2[nT(an)1�2]&1)�a1�(4t) .
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To see this, note from (2.12) that

[nT(an)1�2]&1=o(T(an)&1)

so that by (2.9)

an(1&C2[nT(an)1�2]&1)�an \1&o \ 1
T(an)++�a2n�3

=a(1+o(1)) 2j�3M=a(1+o(1))�(3t)�a1�(4t)

for large enough j. Then from (6.29),

Ej [ f ]w, p�EMn[ f ]w, p

�C1 {_ 1
2t |

3C2 t

0
&w2r

h9n(x)( f, x, [&1, 1])& p
Lp(&a1�(2t) , a1�(2t))

dh&
1�p

+& fw&Lp(a1�(4t)�|x|�1)= . (6.32)

Now we choose

9n :=(3C2)&1 8t .

We must show that (6.12) holds with constants independent of x, j and n,
that is,

(3C2)&1 8t(x)t�1&
|x|
a2n

, |x|�an .

But for this range of x, (2.9) shows that

�1&
|x|
a2n

t�1&
|x|
a2n

+T(a2n)&1�2=81�2n(x)t8t(x)

by Lemma 3.1(b). Setting h1 :=h�(3C2) so that h9n=h1 8t we can rewrite
(6.32) as

Ej [ f ]w, p�C1 {_3C2

2t |
t

0
&w2r

h1 8t(x)( f, x, [&1, 1])& p
Lp(&a1�(2t), a1�(2t))

dh1&
1�p

+& fw&Lp(a1�(4t)�|x|�1)= .
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Replacing f by f&P for suitable P # Pr&1 , and using 2r
h18t(x)(P, x,

[&1, 1])#0, we obtain

Ej [ f ]w, p=Ej [ f&P]w, p

�C3 {_1
t |

t

0
&w2r

h18t(x)( f, x, [&1, 1])& p
Lp(&a1�(2t), a1�(2t))

dh1&
1�p

+ inf
P # Pr&1

&( f&P) w&Lp(a1�(4t)�|x|�1)=
=C3|� r, p( f, w, t)=C3|� r, p \ f, w,

M
2j + . K

For future use, we record a slight generalization of Theorem 1.2:

Theorem 6.3. For j�C3 ,

Ej [ f ]w, p�C1 inf
\ # [3�4, 1]

|� r, p \ f, w,
C2 \

j + , (6.33)

where Ck{Ck( j, \, f ), k=1, 2, 3.

Proof. The only difference to the above proof is that we choose
t :=M\�2j. Then uniformly for \ # [ 3

4 , 1],

nt=
nM\

2j
�

\
2

, j � �

and as \�2�3�8>1�3, we have for j�j0{j0(\, f, t)

1
2t

�n�
1
3t

.

The previous considerations then remain the same, as does our choice of
9n , the point being that (6.12) holds uniformly in \. K

7. THE PROOF OF THEOREM 1.3

We begin with a technical lemma:

Lemma 7.1. (a) For 0<s<t�C,

T(a1�t) \1&
a1�t

a1�s+�C1 log \C2

t
s+ . (7.1)
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(b) For 0<s<t�C,

sup
x # [&1, 1]

8s(x)
8t(x)

�C2 �log \2+
t
s+ . (7.2)

Hence, given #>0,

sup
x # [&1, 1] \

s
t+

# 8s(x)
8t (x)

�C3 . (7.3)

Proof. (a) Using the inequality 1&u�log(1�u), u # (0, 1], we obtain

1&
a1�t

a1�s
�log

a1�s

a1�t
�C4

log(C t�s)
T(a1�t)

,

by (2.11).

(b) Now if x�0,

} 1&
x

a1�s }� } 1&
x

a1�t }+
x

a1�t } 1&
a1�t

a1�s }
� } 1&

x
a1�t }+C5T(a1�t)

&1 log \C
t
s+

by (a) provided t�C, say. We deduce that

}1&
x

a1�s }
1�2

�C68t(x) �log \2+
t
s+ ,

and since also T(a1�s)
&1�2�C7 T(a1�t)

&1�2, we obtain (7.2). Then (7.3) also
follows. K

We turn to the proof of Theorem 1.3. We provide full proofs only where
the details are significantly different and otherwise refer back for proofs.
We begin with an analogue of Lemma 6.1 for Ln[ f ] of (6.11).

Lemma 7.2.

&( f&Ln[ f ]) w&Lp[&1, 1]

�C1 [ sup

0<{�L
0<h�1�(3n)

&w2r
{h8h(x)( f, x, [&1, 1])&Lp[&a1�(2h) , a1�(2h)]

+& fw&Lp(an�|x|�1)]. (7.4)

Here L is independent of f, n.
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Proof. We do this for 0<p<�; the case p=� is simpler. Recall that
the crux of Lemma 6.1 is estimation of

2jn :=|
Ijn

( | f&pj | w) p

�C1 0r, p( f, |I*jn |, I*jn) p w p({jn)

�
C2

|I*jn | |I*jn
|

|I*jn |

0
|w2r

s( f, x, I*jn)| p ds dx. (7.5)

(See (6.16).) We now choose L>0 such that

sup
x # (&1, 1)

(h�L) 8h�L(x)
h8h(x)

�
1
2

, 0<h�1. (7.6)

This is possible by (7.2). Now we choose

$n, k(x) :=L1&k(3n)&1 8L1&k(3n)&1(x), k�1.

Note that by (7.6),

sup
x # (&1, 1)

$n, k+1(x)
$n, k(x)

�
1
2

. (7.7)

In view of (6.6), (3.6), and (3.7), we may assume that L is so large that
uniformly in n, j, x # I*jn ,

|I*jn |�
L
3n

81�3n(x)=L$n, 1(x);

and

|I*jn |t$n, 1(x).

Then from (7.5),

2jn�C3 |
I*jn
|

L$n, 1(x)

0

1
$n, 1(x)

|w2r
s( f, x, I*jn )| p ds dx

=C3 |
I*jn

:
�

k=1
|

L$n, k(x)

L$n, k+1(x)

1
$n, 1(x)

|w2r
s( f, x, I*jn)| p ds dx

=C3 |
I*jn

:
�

k=1

$n, k(x)
$n, 1(x) |

L

L$n, k+1(x)�$n, k(x)
|w2r

{$n, k(x)( f, x, I*jn )| p d{ dx

�C4 |
I*jn

:
�

k=1
\1

2+
k&1

|
L

0
|w2r

{$n, k(x)( f, x, I*jn )| p d{ dx.
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Then as also n�1�(2h) for 0<h�1�(3n),

:
n&1

j=0

2jn�C5 |
an

&an

:
�

k=1

( 1
2)k&1 |

L

0
|w2r

{$n, k(x)( f, x, (&1, 1))| p d{ dx

�2C5 sup

0<{�L
0<h�1�(3n) |

a1�(2h)

&a1�(2h)

|w2r
{h8h(x)( f, x, (&1, 1))| p dx. (7.8)

The rest of the proof is as before. K

We turn to the

Proof of Theorem 1.3. The method of proof of Lemma 6.2 gives at least
for p<�,

&(Ln[ f ]&Pn[ f ]) w& p
Lp[&1, 1]

�C1 { sup

0<{�L
0<h�1�(3n) |

a1�(2h)

&a1�(2h)

|w2r
{h8h(x)( f, x, (&1,1))| p dx+& fw&Lp(I*

0n)= .

(We substitute for (6.20) the appropriate estimate (7.8) in the relevant
places.) The rest of the estimation is almost the same as in the proof of
Theorem 1.2. We can still choose t :=M�(2j ) and still have 1�(3n)�t. K

Finally, we briefly show that under some additional conditions on Q, we
can use the simpler modulus

|*
r, p( f, w, t) := sup

0<h�t
&w2r

Lh8h(x)( f, x, (&1, 1))&Lp(&a1�(2h) , a1�(2h))

+ inf
P # Pr&1

&( f&P) w&Lp(a1�(4t)�|x|�1) , (7.9)

with L fixed as above. We do this for p<�; p=� is easier. We shall
assume in addition to w # E that Q" exists and is non-negative in (0, 1),
and that

Q"(x)
Q$(x)

t
Q$(x)
Q(x)

, x # (0, 1) (7.10)

and

|T $(x)|�C1T 2(x), x # (C, 1). (7.11)

44 D. S. LUBINSKY



File: 640J 308745 . By:DS . Date:22:09:97 . Time:07:22 LOP8M. V8.0. Page 01:01
Codes: 2278 Signs: 1049 . Length: 45 pic 0 pts, 190 mm

Using (7.10) and the method of proof of Lemma 3.2 in [10, p. 24] we
obtain

a$u
au

t
1

uT(au)
, u # (0,�). (7.12)

(Note that T has a different meaning in [10], but has the same rate of
growth as the T here, because of (7.10).) Moreover, using (7.11) and (7.12)
it is not difficult to see that

} d
dt

(tT(a1�t)
&1�2) }�C2 T(a1�t)

&1�2, t # (0, C )

and hence also

} d
dt

(t8t(x)) }�C38t(x) (7.13)

for

0<t�C4 ; } 1&
|x|
a1�t }�

=
T(a1�t)

. (7.14)

Here = is any fixed positive number. We now estimate 2jn a little differently
from the way we proceeded after (7.5). Let us make the substitution
s=Lt8t(x) in the right-hand side of (7.5), keep our choice of L there, and
recall that

|I*jn |�
L
3n

81�3n(x), x # I*jn

to deduce that

2jn�C5 |
I*jn
|

1�(3n)

0

1
(1�(3n)) 81�(3n)(x)

|w2r
Lt8t(x)( f, x, I*jn)| p } d

dt
[t8t(x)] } dt dx

�C6n |
I*jn
|

1�(3n)

0 �log \2+
1

3nt+ |w2r
Lt8t(x)( f, x, I*jn)| p dt dx

by first (7.13) and then (7.2). In applying (7.13) we must ensure that the
range conditions in (7.14) must hold for x # I*jn and t�1�3n. In fact if
|x|�an , then for t�1�3n,

}1&
|x|
a1�t }�1&

an

a3n
�C7T(an)&1�C8T(a1�t)

&1.
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Thus

:
n&1

j=0

2jn

�C9n |
an

&an
|

1�(3n)

0 �log \2+
1

3nt+ |w2r
Lt8t(x)( f, x, (&1, 1))| p dt dx

�C10 sup
0<h�1�(3n)

|
a1�(2h)

&a1�(2h)

|w2r
Lh8h(x)( f, x, (&1, 1))| p dx |

1

0 �log \2+
1
s+ ds.

So under | # E, and the additional conditions (7.10), (7.11) on Q, we
obtain

En[ f ]w, p�C11|*
r, p \ f, w,

1
n+ . (7.15)

We note finally that the additional conditions (7.10) and (7.11) are
certainly satisfied for wk, : of (1.5).
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