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We consider exponential weights of the form w:=e¢~¢ on (—1, 1) where Q(x) is
even and grows faster than (1 —x?)~° near +1, some ¢ > 0. For example, we can
take

O(x) :=exp,((1 —x?) ™), k>0,0>0,

where exp, denotes the kth iterated exponential and exp,(x) = x. We prove Jackson
theorems in weighted L, spaces with norm || fw ., ;, for all 0 <p < co. In part
IT of this paper, we shall prove matching converse theorems.  © 1997 Academic Press

1. STATEMENT OF RESULTS

There is a well developed theory of weighted polynomial approximation
for weights w: (—1, 1) —» (0, o) that behave like Jacobi weights near +1
[6]. However, for weights that decay rapidly near + 1, this theory does not
apply. In this paper, we prove Jackson theorems for even weights

wi=e 2 (1.1)

where Q: (—1, 1) - R is even and grows at least as fast as (1 —x?) ~%, some
0>0, near +1. That is, we estimate

En[f]w,p ZPIEE» ”(f_ P)M}HLP(fl, 1) (12)

0 <p < oo, where 2, denote the polynomials of degree at most n.

1
0021-9045/97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



2 D. S. LUBINSKY

In some senses, these weights are closer to weights on R, such as
exp( —exp(x?)), the so-called Erdds weights on R, than to the classical
Jacobi weights on (—1,1). This is borne out by the behaviour of the
orthogonal polynomials for these weights. For further orientation on this
topic, see [6, 8, 10, 11, 15, 16, 18].

Our methods are similar to those in [5], where Jackson theorems were
proved for Freud weights, and to the follow up paper [2], where Erdos
weights were treated. The approach involves approximating f by a spline
(or piecewise polynomial), representing the piecewise polynomial in terms
of certain characteristic functions, and then approximating the charac-
teristic functions (in a suitable sense) by polynomials. This method has the
advantage of involving only hypotheses on @', in contrast with the more
complicated approach via orthogonal polynomials and de la Vallee
Poussin sums, which typically involves hypotheses on Q" [6, 15].

To state our result, we need to define our class of weights, as well as
various quantities. First, we say that a function f: (a, b) — (0, o0) is quasi-
increasing if 3 C >0 such that

a<x<y<b=f(x)<Cf(y).

DerFINITION 1.1. Let w:=¢ 2, where
(a) @:(—1,1)> Ris even, is continuous, and has limit oo at 1, and
Q' is positive in (0, 1).
(b) xQ'(x) is strictly increasing in (0, 1) with right limit 0 at 0.

(c) The function

Q'(x)
T(x):= 1.3
(=50 (13)
is quasi-increasing in (C, 1) for some 0 < C< 1.
(d) 3¢, C,, Cy>0 such that
Q2'(y) 0\
Q'(x)<C1 <Q(x)> ) y=zxz=Cs;. (14)

() For some >0, 0<C<1, (1—-x%)'*°Q'(x) is increasing in
(C, 1). Then we write we é.

The archetypal example of we & is

w(x) :=w (x) :=exp(—exp,([1—x>] %)), k=0, a>0, (L5)
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where exp, =exp(exp(---)) denotes the kth iterated exponential and
expo(x) = x. For this weight, we see that

k—1

T(x)=2ox(1—x*) """ [] exp,([1=x*]"%),  x>0.

j=1
It is not too difficult to see that we can choose C,>1 in (1.4) arbitrarily
close to 1 in this case, if kK > 1. More generally, the function 7(x) measures
the regularity of growth of Q(x).

We need the condition that xQ'(x) is strictly increasing to guarantee the

existence of the Mhaskar—Rahmanov—Saff number a,, the positive root of
the equation

2 , dt
u nL a,tQ'(a,t) \/ﬁ, u>0. (1.6)

If we used something other than a, (such as Freud’s quantity ¢,, the
root of u=¢q,0'(q,), or O'"'(u), where Q1! is the inverse of Q on
(0, 1)), we could require less of xQ'(x), namely, that it be quasi-increasing
for x close to 1. However, this would complicate formulations and it is
unlikely that one can still describe the improvement in the degree of
aproximation near +a,. For those to whom a, is new, its significance lies
partly in the identity [ 12-14]

[Pw 1= 1Pwly., PeZ, (L.7)

(—an, ap)>

and the fact that a, is the “smallest” such number.

Note that (1.4) on its own forces Q'(x) to grow faster than (1 —x
near +1, for some 0 > 0, so there is some overlap between it and condition
(e) of Definition 1.1. We need (e) only in Section 5, in constructing
polynomial approximations to w~'. We could replace (e) by the implicit
assumption that there exist polynomials P, of degree O(n) such that

2)7175

Cl <Pn(x) Wy(x)< CZ’ X€ [ —dy, an]'

In all probability, (a) to (d) of Definition 1.1 already guarantee the
existence of such polynomials, and possibly the methods of Totik [ 19] can
be used to verify this.

Our modulus of continuity involves two parts, a “main part” and a
“tail.” The main part involves rth symmetric differences over the interval
[ —ai2:> @1/2:], and the tail involves an error of weighted polynomial
approximation over the remainder of (—1, 1). For 2> 0, an interval J, and
r>=1, we define the rth symmetric difference as

AZ(f,x,J):zi <:>(—1)ff<x+’2h—ih>, (1.8)
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provided all arguments of f lie in J, and 0 otherwise. Sometimes the
increment /& will depend on x and the function

®,(x) = ‘1—"“'

+T(a1/,)71/2, xe(—1,1). (1.9)
Ay,

This is the case in our modulus of continuity

wr,p(.f; w, t) = Sup HWAZGS,(x) (.](7 X, (7 17 1))”L[,(|x\ < aiy/2r))

O0<h<t

+ inf H(f*P)WHL,,(al(4,)<\x|<1) (1.10)

PeZ

and its averaged cousin

B 1 ¢t Lp
TR Y IR VTART)

+ inf H(f_P)W‘|L,,(a,(4,)<\x|<1)- (L.11)

PeZ

(If p= o0, @, ,:=w, ,). One can think of 1®,(x) as a suitable replacement

for the factor & ./1—x? that appears in the Ditzian-Totik modulus of
continuity.

The inf in the tail is at first disconcerting, but note that it is over polyno-
mials of degree at most r — 1, not n. Its presence ensures that for fe Z _,,
o, ,(f,w,t)=0. It also reflects the inability of weighted polynomials P,w
to approximate well beyond the interval [ —a,, a,]. For classical Jacobi
weights, the interval [ —a,, a,] is essentially [ —(1—#n"2),1 —n 2] and
the length of the remaining subintervals of [ —1, 1], namely n 2 is negli-
gible. However, for our weights, @, may be significantly smaller, and the
“tail” interval cannot be ignored. For example, for w,_, of (1.5) with k> 1,

1— a, ~ (logk n)il/“a

where log, =log(log( --- (log(--))) denotes the kth iterated logarithm. Here
and in the remainder of the article

c,~d

means that there exist C;, C, >0 such that
Cl < Cn/dn < CZ

for the relevant range of n. Similar notation is used for functions and
sequence of functions.
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We remark that we could probably replace a, ., in the above definition

of our moduli of continuity with a,,— C,t/\/T(a,,), which is somewhat
larger, since, as we shall see in Section 2,

ay,—ay oy = Ci/Tayy,) > t/\/Tay,).

Likewise, we could probably replace a4, in the moduli with the some-
what larger a,,— C,t/\/T(a,,), with suitably chosen C;, j=1, 2. However,
the resulting moduli are probably equivalent to those above, and the extra
complications and hypotheses on the weight are not worth the effort.

The moduli of continuity are rather difficult to assimilate (as is the case
with all their cousins [6] for weighted approximation on R). A good way
to view the modulus is that for purposes of approximation by polynomials
of degree at most n, essentially z=1/n, the main part is taken over the
range [ —a,;,4a,,], and the tail is taken over [ —1,11\[ —a,4,a,4].
Moreover, the function @,(x) describes the improvement in the degree of
approximation in the range {x:a,,<|x|<a,,}, any fixed ae(0,3), in
much the same way that \/W does for Jacobi weights on [ —1,1]. In
particular for x over this range, ®@,(x)~ T(a,) "> =0, n — oo.

Our main result is:

THEOREM 1.2. Let w:=e %e&. Let r=1 and 0<p<oco. Then for
f (=1, 1) R for which fwe L,(—1,1) (and for p = o0, we require f to be
continuous and fw to vanish at +1), we have for n= C,

C C
En[f]w,p < Cla_)r,p <f’ w, nz> < Clwr,p <f; Wa nz>> (112)

where C;, j=1, 2,3, do not depend on f or n.

We note that the result may be easily extended to hold for n=r —1. For
a proof of this for the range C;=n>r—1 in the related case of Freud
weights, see [ 5]. The proof is exactly the same here.

Unfortunately, the moduli above are not obviously monotone increasing
in ¢, so we also present a result involving the increasing modulus

w?fp(ﬁ w, Z) .= Ssup HWA:-h¢/l(x) (f; X, (_ 13 1))HL,;(|x\ < ai/(2n))
O<h<t
O0<t<L

+ inf (=PI L,y <ixi <1y (1.13)

PeZ

Here L is a (large enough) number independent of £, ¢.
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THEOREM 1.3.  Under the hypotheses of Theorem 1.2,

ELSY,< Coty (£ 52) (1.14)

n=Cs, where C,,j=1, 2, 3, do not depend on f or n.

The moduli of continuity will be analyzed in part II of this paper, and
in particular the relationship to K-functionals/ realization functionals will
be discussed. These have the consequence that we can dispense with the
constant C, inside the moduli in (1.12) but this requires extra hypotheses
on w, namely, a Markov—Bernstein inequality.

The paper is organised as follows: In Section 2, we present some techni-
cal details related to Q, a,, and so on. In Section 3, we present estimates
involving differences. In Section 4, we obtain polynomial approximations
to w~! over suitable intervals, and then in Section 5, we present our crucial
approximations to characteristic functions. We prove Theorem 1.2 in Sec-
tion 6 and Theorem 1.3 in Section 7. Moreover, we discuss some further
simplification of the modulus w}¥, in Section 7.

At a first reading, the reader should first read Section 6 and then Sec-
tions 4 and 5. The technical Sections 2 and 3 can be read last.

We close this section with a little more notation. Throughout,
C, C,,C,, ... denote positive constants independent of n, x and Pe #,. The
same symbol does not necessarily denote the same constant in different
occurrences. We write C# C(L) to indicate that C is independent of L.
Moreover, when dealing with, for example, x, ye(C, 1), it is taken as
understood that C < 1. In the sequel, we assume that w=e~"2e &, except
that we shall not use condition (e) of Definition 1.1 unless specified.

2. TECHNICAL LEMMAS

In this section, we shall assume w e &, except that we shall not use condi-
tion (e) of Definition 1.1.

LemMA 2.1. (a) For some C;,j=1,2,3, and s>r> Cs,

<S> CyT(r) < Q(S) < ( >C1 T(s). (2.1)

r

N L

Moreover,

SN\CTIT(s)_Q(s) _T(s) ()T
<r> T S0 ST (r) ' (22)
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(b) For some C;, j=1,2,3 and xe(C,, 1),

T(x) >,
1—x
. C .
Q(.H(x);(lT;C}H, j=0,1.

(c) Given 0 >0, there exists C such that

)
T<y)~T<y<1‘ny>>>° y=C

Proof. (a) First, (2.1) follows from the fact that for s>r> C;,

O(s) r* s T(1)
1og%=£ (1) dt~£ i

and the fact that 7 is quasi-increasing. Then the identity Q'(u) =

gives (2.2).

T(u) O(u)

(b) Since Q is increasing, we can assume that C,>1 in (1.4). Then

writing C, =149, d >0, we have

s <Cigay VxR
Then as Q(1)= oo, we obtain
Q'(x) 1
dv =
C Q( )1+(> j Q 1+(5 y 5Q(X)(s
o)
_O0(x)_ G
=00 " 1=«

Integrating yields

0(x) > Cy(1 —x)~©
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and so
0'(x)=0(x) T(x) > C5(1 —x) '~
(c) We can reformulate (1.4) as

T(y) <Q(y)>c“‘

O(x)

——<C
T(x) !

Hence for x = y(1 —J/T(y)), the quasi-increasing nature of 7" gives

c<=Y <, exp ((Cz—l)J}%((l’))dz>

T(¢t
=C,exp <(C2— 1) fy Z([)dl> < C, exp <C5T(y) log y> < Cs.
x X
Recall here that 7(y) is large for y close to 1. |I

Next, some properties of a,,:

LemMA 2.2. (a)a, is uniquely defined and continuous for ue(0, oo) and
is a strictly increasing function of u.

(b) Foruz=C,

0'(a,) ~uT(a,)" (2.6)
O(a,) ~uT(a,)~ "2 (2.7)

(c) Given fixed >0, we have for large u,

Iag,) ~ T(a,). (2.8)
(d) Given fixed o> 1,

a,, 1

a, —1 ~m. (2.9)

(e) If a>1, then for large enough u,

Q(aflu)
o> C > 1. (2.10)
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(f) For some C;, j=8,9,..12, u>Cq, and L>1,

IOg(CuL)> Ay log(Cy L)
Ch,——— >14+Cp———. 2.11
© p< 2 T(au) au - 10 T(aLu) ( )

(g) If Cyisasin(14),

T(au)<C6u2([szl]/[Cz+1]>:CGuZ(lﬂ)‘) (2.12)

some 0 > 0.

Proof. (a) The function u — a, is the inverse of the strictly increasing
continuous function

dt

2 1
a—>ff atQ'(ar) d,  ae(0,1),
TJo

_Z2

which has right limit 0 at 0. (Note that this function is continuous even if
Q' is not.) We claim also that the function has limit o0 as ¢ -» 1 —. For, if
a, t=C, (2.4) gives

Q'(at) = Cy(1—ar) =<1,

So the assertion follows and hence a,, is defined for all u € (0, c0).

(b) For u so large that T(a,) > 2, we have

u_2{f”””+f }aﬂQ(u) dt
au Q,(au) T 0 1 —1/T(ay) au ’(au) A/ 1 - t2

=T g, Q'(a,t) 2 ! dt
<~ T(a,) G\l Gy 2
b (a L a,0'(a,) HJI—I/T((I,,) 1—¢2
2 — 4
2 e Q@) —00) 4
n a,0'(a,) n

4 12 Q(“) —1/2 & 12 —1/2
<_Ta,)" .0 )+ Ta,) " <—T(a,) """

Here we also need u so large that Q(a,)>|Q(0)| and a,> 3. So we have

a,0'(a,)> 1 uT(a,)".
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In the other direction, (2.2) gives, for large u,

u zgflath’(aut) dt
auQ’(au) n 0 aqu(aH) «/l_tz

T(a,t) dt

1 €1 T a)

I(a,) 1—¢2

1
>C,j
12

1
(o1~ 7a)
u T 1 CiT(ay) a1
>, (a.) (1 ) J dr
1—1/T(a,)

J1—¢
>C;3T(a,)” "

Here we have used (2.5) and the quasi-monotonicity of 7. So we have (2.6).
Then (2.7) follows from the definition of 7.

(c) We can assume f>1. Then by (2.7), and quasi-monotonicity
of T,

CH<€¥Z§N{Q£ZJ]7{Q5uJ2<ﬁ%

(d) Now for fixed a>1,

2 ! dt
== tQ'(a,,t
a’u IO aocu Q(aocu )\/itz
1 dt

22 a0

ay/any m

12
> CyuT(a,)'? <1 —”>
a

by (2.6). Hence

-2 < Cy/T(a,).

ou
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In the other direction,

20 pawas  pl dt
o =— {f +J } 10 (a,,t)
7| Jo et 1—¢
2 paufda dt 2 1 dt
<7J aaulQ,(aaut)7+7aauQ’(aau) J‘
T Yo 1 ao(ut 2 T ay/asy 1 - l
(%)

a,[2 ¢ 4 %
< u |~ Yy - ’ 1_ u
w2 et | et (1-5)

a \12
<u+ CuT(a,)'? <1 — “>

by (2.6) and (2.8). Then

(e) For large enough u,

by (d) of this lemma.
(f) From (1.4) with y=a,, and x=a,,
T(aLLt) < C<Q(aLL¢)>C21
I(a,) O(a,) '

This forces C,>1, as the left-hand side —» o0 as L — co. Then with the
constants in ~ independent of L, (2.7) gives

(2.13)

Q(aLu) LUT(aLu) —12
Ola,) ~ uT(a,) '?
(

—(C2—1)2
>CL <%Zf))> (by (2.13))
- Olay,) > CLY(+O),

Q(au)
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Then using (2.1),

a C1T(arw)
< Lu> > CLZ/(I + ()
a

u

and the right inequality in (2.11) follows if we use u — 1 >logu, u>1. In
the other direction, (2.1) and then (2.7) give

(G|

a O(a,)
LuT(a,,)'?
S\Ci——— "
ull(a,)

Here the constants are independent of L and u. Then the left inequality in
(2.11) follows.

u

1/(C2 T(ay))
> < (C3L)l/(C2T(”u)).

(g) We apply (1.4) with y =q, and x = C;, so that
Q,(au) < C4 Q(au)c2
=ul(a,)"? < Cs(uT(a,)”'?).
Rearranging this gives (2.12). |i

We finish this section with an infinite finite-range inequality: We provide
a proof, as those in the literature [ 8, 10, 12-14, 18] do not quite match our
needs/hypotheses:

Lemma 2.3. Let 0<p< oo, s> 1. Then for some C,, C,>0, n>1, and
Pe7,

”PM}HL,(fL Hs Cy | Pwll, (—dgn, dg)* (2.14)
v P’
Moreover,
_ —-1/2
HPM}HLP(‘X‘ > am) S Ce Contay) ”PM/HLp(fum,am)' (2.15)

Remark. Note that (2.12) shows that for some C;>0, and large
enough n,

nT(a,)”'"?=n®.

Proof. We may change Q in a closed subinterval of (—1, 1) without
affecting (2.14), (2.15) apart from increasing the constants. Note too that
the affect on a, is marginal and is absorbed into the fact that s > 1. Thus
we may assume that Q' is continuous in (—1,1). This and the strict
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monotonicity of #Q'(¢) in (0,1) allow us to apply existing sup-norm
inequalities to deduce that for Pe Z,,

HPWHLx(fl, Hs C HPM}HLI[fa,,,

an]*

For a precise reference, see [8, Theorem 4.5], for example. Moreover, the
proof of Lemma 6.1 in [ 10, pp. 57-58] gives without change

1 2 1
|Pw|”(a,,x)<77xf |Pw|? (a,t) dt, xe(1,1/a,). (2.16)
Tx—1 1

Let (x> denote the greatest integer <x. Let J be small and positive, let
[:={on) and let T,(x) denote the Chebyshev polynomial of degree [
Using the identity

T/(x)=3[(x+ /x> = 1)+ (x—/x*=1)1], x>1, (2.17)
it is not difficult to see that
T(x) >~ ex <14/ —1> e<1 9> (2.18)
/(x) =5 exp ﬁ X , x '3 ) .

We now let m:=n+Il=n+{ony, m:=n+2l=n+2{on) and apply
(2.16) to P(x) T),(x/a,,) e ?,,. We obtain for x> 1,

1 2x i
\Pw|” (a,x) <T,(x) "~ |Pw|” (a,1) dt.
TX— 1 —1

Replacing a,,x by y and integrating from a,, to 1 gives

1 am 1 —p
| IPwlp(y)dy<<f |Pw|” (s) ds><2j y T,<y> dy)
—dm /s y_a a a

am' am' m m m

Here using (2.18),

1 P d 1/am
f J T,<y> a—yzf LT,(x)’”a’x

am' y - am am m an' [am X = 1

9/8 1 lp
< C <Jam'/am X —= 1 exp <_2 . 1> dx>

9 8 , 1/2
<Cllog</>exp<—C21<a’"—l> >
a,,/a,, —1 a,,

< C3 exp ( - C4nT(an) _]/2)'




14 D. S. LUBINSKY

Here we have used (2.9) and our choice of I Now if ¢ is small enough,
m’ < sn. Then (2.15) follows easily and in turn yields (2.14). |

3. TECHNICAL LEMMAS ON o,

In this section, we present various estimates involving the function @,(x).
Throughout, we assume that w=e~2 e &, except that we do not assume (e)
of Definition 1.1. Our first lemma concerns the function

D,(x)= ‘1 —M

+ T(a,,) ">, x>0.
ay,

LemMma 3.1. (a) There exist C,, C, independent of s, t, x, such that for
O<t<s<Cy,

D (x)<CD,(x), |x|<ay,. (3.1)
(b) There exists C, such that for 0 <s< C, and s/2 <t<s,
D (x)~D,(x), |x|<Ll (3.2)
Proof. (a) Let >0 be fixed. First for
x| a1 —0/Tlay,) =1 - |xlfay, >5/Tlay)

we have

@S(x)~\/1 _|x|</1 —mé D,(x).

Ay ayy,

Next, for
a,(1—0/T(a,;)) <|x|<ay,=1—|x|/a,,<5/T(a,,)
we have
®,(x) ~ Tay,) .

This is bounded by C®(x) if |1 —|x|/a,,|>J/T(a,), for a fixed 6> 0.
Otherwise, we have |1 —|x|/a,,| <J/T(a,;) and |1 —|x|/a,,| <J/T(a,), so

:’<1_|x|>_|x|<am_1>’
Ay Ay | x|

<C, 5/T(al/s)-

a
‘ il
Ay
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If 0 is small enough, we deduce from (2.9) and (2.8) that
T(al/t) ~ T(“l/s)»
SO
D (x)~T(ay,) "' ~T(ay,) "~ @(x)

and again (3.1) follows.

(b) Now
EECI TN
ay, ayys Ay Ay,
<‘1—|x| 0( ! >
al/.\' T(al/.s')

Then we obtain for |x| <1
D (x) < CD(x).

The converse direction is similar. ||

LemMa 3.2. (a) Let L>0. Uniformly for u>=1, and |x|, |y| <a,, such
that

lx—yl<— ‘l—m, (3.3)
u a,

we have

w(x) ~w(y) (34)
and
1—m~1—m. (3.5)
azy Aoy
(b) Let L>0. For te(0,ty), |x|, |y| <ayy L, such that

|x —y| < Ltd,(x), (3.6)

we have (3.4) and

D(x)~P,(). (3.7)
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Proof. (a) It suffices to prove (3.4), (3.5) for large u. Moreover, (3.4)
and (3.5) are immediate for |x| < C<1 and large u. Let us suppose that
C<x<y<x+(L/u) /|1 —]|yl/a,|. Then as Q'(s) is quasi-increasing for s
close to 1,

0<Q0(y)—0(x)<C, Q' (y)(y—x).

We have then (3.4) for

Q'(y)(y—x)=0(1). (38)

0'(y) /‘1—5 <Cyu, (39)

so that (3.3) implies (3.8) and hence (3.4). If first, 0 <y <a,/2, then

oWy | ‘1—y SCsQ'(J’KCMuQ'(,V)f1 dt
a, 12 /1 —12

! dt
<G| atQ(a,n

12 J1=17

If, on the other hand, ¢,2<y<a,,

Q’(y)\/‘l_y <C fl 0,10 () —2— < Cu
au = 7 ,V/au ! ! 1_t2\ 8 '

So we have (3.9) in all cases and hence (3.4). We proceed to prove (3.5).
Now from (3.3) and as y<a

We shall show that

< Cqu.

us

R S
\1_y/a2u a2u(1 _y/a2u) — /(lzu

1
=1+0<
u,/l—au/azl) u

+
Q
TN
<
—_
=<
—

~1+0(

by (2.9) and (2.12).

(b) Write Lt=1/u, so that |x|, |y|<a,, ., =a,, and we can recast
(3.6) as

1 1
|x_y|<cl|: 1_M+T(au 1/2i|<C2 l_m
u 2u

u Aoy
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by (2.8), (2.9), and (3.2). Then (a) gives (3.4), and (3.7) follows easily
from (3.5). |

4. POLYNOMIAL APPROXIMATION OF w—!
The result of this section is:

THEOREM 4.1. Assume w=e 2e&. For n=1, there exist polynomials
G, of degree at most C,, such that

0<G (x)<w i (x), xe(—=1,1) (4.1)
and
G (x)~w 1 (x), |x|<a,. (4.2)

We remark that this does not follow from existing results in the literature
on approximation by weighted polynomials of the form P,(x) w(a,x) [19]
as our weights do not satisfy their hypotheses. The methods of Totik [19]
can be applied to give sharper results but we base our proof on a method
involving entire functions. It is only in the following result that we need
condition (e) of Definition 1.1.

LEmMMA 4.2.  There exists an even function
G(z)= ) gz¥, g=0Y), (4.3)
j=0

analytic in {z: |z| <1}, such that
G(x)~w~(x), xe(—1,1). (4.4)

Proof. This is different from that in [10, p. 107ff] because of the
different hypotheses on Q, so we include the details. Consider the transfor-

mation
(r) = |—— re(0, )
=x(r) = r .
X X P s

This is equivalent to
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0.(r) := Q<x<r>)=Q< /ril> re(0, o).

We shall apply a theorem of Clunie-Koévari [1] to

Set

P(r) =",
Straightforward calculations show that
, 1
x(r) 2x(r)(r +1)2
and
oy 9'(x(r))
Qir) 2x(r)(r+1)?
Next,
1
A T

so if J is as in Definition 1.1(e),

1) Qi =+ 1)t (1 e )

is quasi-increasing for large r. Now set
Y(r) :==rQ\(r).

By the quasi-increasing nature of r' ~°Q)(r), we have for large enough
and some C independent of 4,

Y(ar) —(r)={(Ar)? (Ar)' =2 Qy(Ar) —rQ\(r)}
>r!' 0N {(Ar)° C—r’} > 11

if A is large enough, and r >r,. Moreover,

__rQGr) X Q)X
M =517 20D = 2 QN =)




EXPONENTIAL WEIGHTS ON [ —1,1], 1 19

is increasing in r for large r, since x(r) and Q'(x(r))(1 —x(r)?) are.
Moreover, ¢(r) :=e2'") admits the representation

¢(r)=¢(1)exp<£rl/j(:)ds>, F>1.

By a theorem of Clunie and Koévari [1, Theorem 4, p. 19], there exists
entire

H(r)y=Y hyr’, h;=>0Vj
=0

such that

)~ n=ep (0 1)) o

Then assuming /,>0 as we can, we see that this holds for r > 0. Then

G(x) :=H< ¥ >=H(r)~exp <Q<

1 —x?

1))~ epie)

satisfies (4.4) and as

Gox)=H (i )

we also obtain (4.3). ||

Proof of Theorem 4.1. Let J be a positive even integer (to be chosen
large enough later) and let 7,(x) denote the classical Chebyshev polyno-
mial on [ —1, 1]. Let G, denote the Lagrange interpolant to G at the zeros
of T (x/a,)’ so that G, has degree at most Jn—1 and admits the error
representation

(GG =g | 2O (T,

T 2ridrt—x \ T (t/a,)

for x inside I. We shall choose I" to be the ellipse with foci at +a,,
intersecting the real and imaginary axes at (a,/2)(p+p~') and
(a,/2)(p—p~"), respectively. Here we shall choose for some fixed small
e>0,
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Since G has non-negative Maclaurin series coefficients and satisfies (4.4),
we deduce that

w=((a,/2)(p+p~ ") 1

0,=11-G,/G <C - .
I OOt < T e i T a1

Now for teI’, we can write t=(a,/2)(z+z~"), where |z| = p, so that

T (t/a,)| =1T,(3(z+z71)=[5("+z7")]
>5(p"—p~") =exp(ConTla,) 7).

(Recall that nT(a,)”"?— oo as n— oo and in fact grows faster than a
power of n). It is important here that C, is independent of J. Next

a, . F;
= <a,| 1 +C3—=——|<a,,
> (p+p )<a < +C3 T(a,,)> a,

if ¢ is small enough, and » is large enough, by (2.9). Then

(Gt ) vt <ol Contla,) )

where again it is important that C, is independent of J. Since
(p—1)=2~ T(a,) grows no faster than a power of n, we see that choosing
J large enough gives

9,< CT(a,) exp(nT(a,) "2 (C4— C,J)) >0,  n— oo

Then (4.4) gives (4.2).
We now turn to proving (4.1). It suffices to prove

0<G,<Cw™!

for then (4.1) follows on multiplying G, by a suitable constant (and (4.2)
is still valid)). First, we can assume 7 is even (for odd n, we can use G, )
so that H,(x) := G,,(\/;c) is a polynomial of degree at most Jn/2 — 1 (recall
that 7, and J are even) that interpolates to the function H(x):= G(\/;c),
which is analytic in (—1, 1), at the Jn/2 zeros of T, n(\ﬂ/a,,)’ that lie in
(0, a?). Thus H,(x) is determined entirely by interpolation conditions. Let
y, denote the leading coefficient of Tn(x/\/a). Then the usual derivative-
error formula for Hermite interpolation gives for xe (0, c0) and some

¢e(0,1)

\/;C H(Jn/z)(é)
(H—H,)(x)=y, Tn<a > WZO.

n
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(Recall that H is analytic and has non-negative Maclaurin series coef-
ficients.) So in (—1, 1),

G, <G<Cw

To show that G, >0 in (—1, 1), we note that it is true in [ —a,, a, ] (this
follows from (4.2)) and we must establish it elsewhere. We use a zero coun-
ting lemma used to prove the Posse-Markov—Stieltjes inequalities [ 7, p. 30,
Lemma 5.3] (there the proof is for (— oo, o0), but the proof goes through
for (0, 1) with trivial changes). Now H is absolutely monotone in (0, 1) and
H— H,, has Jn/2 zeros in (0, a>]. If m is the number of zeroes of H,(x) in
[a2,1), Lemma 5.3 in [7, p. 30] gives

Ji Ji
7n+m<deg(Hn)+ 1 g;_

So m=0, that is, H, has no zeros in (a., 1). Thus H,>0 there, so G, >0
in(—1,1). ]

5. POLYNOMIALS APPROXIMATING
CHARACTERISTIC FUNCTIONS

Our Jackson theorem is based on polynomial approximations to the
characteristic function y, ,; of an interval [a, b]. We believe the following
result is of independent interest:

THEOREM 5.1. Let [ be a positive integer. There exist C,, J, n, such that
forn=nyand t€[ —a,, a,], there exist polynomials R, . of degree at most
2LJn such that for xe(—1, 1),

7
i us— R, (x)w(x)/w(r><cl<1+”'x_"> NESY

V1=ltl/as,

We emphasise that the constants are independent of n, 7, x. Our proof
will use polynomials from [9] built on the Chebyshev polynomials:

LEMMA 5.2.  There exist C,, B, ny, such that for n =n, and |{| < cos n/2n,
there exists a polynomial V, . of degree at most n—1 with

HVn,4HL7L[71,1]=Vn,g(C)zl; (5.2)
B /1—[{|

Vo ()] < :
' nlt—{]

te(—1, H\{{}. (5.3)
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Moreover,

V)25, 10 < 6 L (54)

The constants are independent of n, (, t.

Proof. The assertions (5.2), (5.3) are Proposition 13.1 in [9]. The
estimate (5.4) follows from the classical Bernstein inequality. |i

The polynomials R
say,

are determined as follows: Let us suppose that,

n,t

a,<17<4,.
Later on, we shall suppose that 7 exceeds a fixed positive constant. We
define

fi=t (5.5)

Azijn

and if G, are the polynomials of Theorem 4.1,

- j‘g Gn(s) Vn, {(S/a2IJ}1)lJ dS
. IS* Gn(s) Vn, C(S/aZIJn)U dS -

R, (x) (5.6)

The parameter 7* > 7 and J are defined as follows: Let M denote a positive
constant such that for, say, u > u,,

Q'(x)<MQ'(a,), 3

The existence of such an M follows from (2.6), (2.8). We set

N

x<d,,. (5.7)

4in

anQ’(T) vV l_g

H:=H(n,t,1):= (5.8)

and if t=a,,
r*:zr*(n,r):zmin{azr,an,r+2a"./1—CHlogH}. (5.9)
n

The reason for this (complicated!) choice will become clearer later. We
assume that J >4 is so large that G, has degree at most Ju — 1, and also

J=32M, (5.10)

where M is as above. Note that then R, , has degree at most Jn+ IJ/n<
21Jn. We first record some estimates of the terms in (5.6):
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LemmA 5.3. (a) Formn=n,, and C,<t<a,, we have
e s 124 C
w(r)f G, (s) VM( > ds>=2/1—¢, (5.11)
0 aZlJn n

where C,# Cy(n, 7).

(b) For x e (T» a21.ln)a

@i s \Y7? C, nlx—r| -
v, ds<1/15<1+ > 5.12
‘[x ¢ <a2/Jn> n vV 1 _C ( )

andfbr X € ( —A21yns T)a

x s \"? C nlx—t|\ '
V;7Z<> dsSI\/l_C<1+ > . (513)
J‘*“len ” Aa1yn n A/ 1 —g

Here C, # C,(n, 7).

Proof. (a) Let us denote the left-hand side of (5.11) by I". By (4.2) and
(5.4),

T C
—1 4 _
I'>Cow(7) J‘rf(Cg/n) 1%W (s)ds>= . V1-¢,

where we have used (3.4) of Lemma 3.2(a).

(b) These follow in a straightforward fashion from the estimates
(5.2), (5.3) and the fact that J>4. |

Now we begin the proof of Theorem 5.1. We first show that it suffices to
consider 7 in the range [ S, a, ] for some fixed S<1.

Proof of Theorem 5.1 for |t| < S, where S<1 is fixed. Note first that
since for such 7,

w(x)/w(t) <w(0)/w(S), xe(—1,1),

we must only prove there exists R, . of degree at most n such that

nlx—1t/\ !
1+

|X[T,u”]7Rn,r| (X)<C1 1 |T| s
ary
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for |x| <1. Setting here ¢ :=1/a,, and s:=Xx/a,, and U, (s) =R, (x)=
R, [(a,s), we see that it suffices to show that

Ixre 19(s) = U, )| < Cy(1 +n ls—¢&) ", se[—2,2].

We have used here that || < C<1, for large n. The existence of such
polynomials is classical. See for example [4]. One could also base them on
the V, . above. |

It suffices to consider t€[ S, a,], where S is fixed. For, once this is
done, we have the result for all 7€ [0, a,]. With the result for 7 >0, we set

R, _(x):=1-R, (—x), xe(—1,1).

It is not difficult to check the result for —7 from the corresponding result
for 7, using the identity

%[7‘[,6{”](x)= I_X(T,un](_x)' I
In the sequel, we define R, . by (5.6)—(5.10).

It suffices to prove (5.1) for t €[S, a, ] and |x| <a,,,. For then (5.1) for
this restricted range implies

O] ) s

where C,# C4(n, 7). Since the polynomial on the left-hand side has
degree at most 2/+ Jn+ IJn<n2l/n, some fixed <1, if /=2 and n is
large enough (as we can assume), then the infinite-finite range inequality
Lemma 2.3 gives

n(x—1) r)' w(x)
1 _— R
H< " L /1 —1/a,, noA) w(t)

Then (5.1) follows for |x|=ay,,. |

C
< C3n 49

Lol —ayyn» 3]

< Csexp(—ne).

Lo(ay;, <|x|<1

We can now begin the proof of (5.1) proper. We consider five different
ranges of x: [Oa T)? [Ta T*]a (T*9 an]s (ana a2/Jn,]a [_a2/Jn9 0) Moreover, we
set

A('x) = |X[‘r, a,] _Rn,‘r| (x) VV(X)/M/(T).
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Proof of (5.1) for xe[0, 7). Here using (4.1), and then (5.11),
jo (8) Vi (s/ay,,)" ds
(T) ;7(S) VH, g(s/a2l./n)lj dS
xX) [5w'(s) Vi (s/azy,)"” ds
(I/n) /1=C
f’é V¢ (S/azun)u ds

(1/n) /1=C

by the monotonicity of w. Then (5.13) gives the result. Note that uniformly
in 7 and n,

Alx)=

<C

~1-=

21y Ay,

1—¢=1- 1

Proof of (5.1) for xe[t,t*). Here

X) § Gn Vn C(S/a2lJn)lJ dS
A 16 Guls) Vel s
< Cff exp(Q(s) — Q(x)) V., As/az;,)" ds

(a,/n) /1=C

by (4.1) and (5.11). Now for se(x, t*), the property (5.7) of Q' gives
(recall t=gq, and t* <a,,)

O(s) — O(x) S MQ'(a,)(s —x) S MQ'(7)(s — 7).
Then using our bounds on V,, ; in (5.2), (5.3), we have
[5 exp(MQ'(7)(s — 7)) min{1, Bayy, /1 —/(n(s
1 (/) /T—C

=C,B Jn(r* e exp (azm’ 4IMBu> min {1 I}U du
! n(x —t)/Bayy, /T—C a H ‘u

(2/B) Hlog H . 1) 72
< Czj g(u) min {1, } du
n(x —t)/Bay;, /1 =L u

A(x)<C

n

for say n>=n,=n,(J, L) by (5.9) and where

8IMBu\ . IR
g(u) :=exp min<1,—, .
H u
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We claim that if J is large enough,
2
gu)<Cs,ue O,EHlogH ,

with C; independent of 7, n. First we show that
H>e; H>=e5? (5.14)

uniformly for €[S, a,] and n>=ny(J, /). Recall that B, J, M are inde-
pendent of / (see (5.3), (5.7), (5.10)). Next, from (3.9), for t €[S, a,],

T

Q'(r) [1—

< C4n9
Az,

with C, # Cy(n, 7,1). Then from (5.8),

4l<
Hz=—

1 —1/ay, >”2
C, '

1— 7‘-/aZ/Jn

Here for n>=ny(J, [), we see using the inequality 1 —u <log(1/u), ue(0, 1],
we obtain

1— T/all.ln _ T 1— aZn/aZIJn
1— T/a2n dsy 1— T/aZn,

log (as;;,/a5,)

<1
* 1 _an/azn

<1+ Cslog(Cl),

by the left inequality in (2.11) and (2.9). Thus

H>= Cgl/\/log(CLT).

It follows that we obtain (5.14) if we choose / charge enough. Then from
(5.14) follows

8IMB
e

g(u)gexp( >, ue(0,1].

Next, by elementary calculus, g has at most one local extremum in [ 1, c0),
and this is a minimum. Thus in any subinterval of [1, c0), g attains
its maximum at the endpoints of that interval. In particular, we must
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only check that g((2/B)H log H) is bounded. (Note here that by (5.14),
(2/B)H log H>e). But

2 J) Jl 2
— = _——— — <
g<BH10gH> exp<llogH{16M 2} 2log{BlogH}>\1

as J>=32M and H>e%? So we have
© 1) V72
A(x)<c7f min{l,} du
n(x —1)/Bay;;, /1 —{ u
and then (5.1) follows as J>4. ||

Proof of (5.1) for xe(t*, a,]. Here

W(X) “lf* Gn(s) Vn, {(S/a2lJn)U dS
M}(T) (T)»= Gn(s) Vn, C(S/a2lJn)U dS

[ exp(Q(s) = Q(x)) V., ((5/azy,)" ds

(I/n) /1 =<

n plr+x12 s \¥
<G, <eQ([f+XJ/2)Q(.\)j Vn,C< > ds

* a2l.1n
x s \¥
+ f Ve ds
[t+x]/2 Aoiyn

<C, <eQ([r+XJ/2)Q(X) {1 +”(T*_T)} L { | +”(x_f)} l>

an\/l_g an\/l_c

A(x) =

<

(5.15)

by (5.12). Here if t* > [t 4 x]/2, the first term in the last two lines can be
dropped and we already have the desired estimate. In the contrary case, we
must estimate the first term. We note that we can assume that t* <a,, for
otherwise the current range of of x is empty. We consider two subcases
(recall the definition (5.9) of 7*):

(I) =*=1t+2a,/n)/1—(HlogH

We shall show that

_ 0w - Q([r+x12)
" Hog(1+n(x—1)/a, /1—20)

>1. (5.16)
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Then the first part of the first term in the right-hand side of (5.15) already
gives the desired estimate; the second part of that first term can be
bounded above by 1. Now since 1Q’(#) is increasing,

Q'(z)%Q'(s)%Q'(s), tzs%.
Hence
+x\_1 xX—1
ow-0 ()= 000 (*F)
Setting
n(x—r1)
u:= ,
an I_C
we have
rsQ@a1=Cu_ w
4nllog(1 4+ u) Hlog(l+u)
But

Mzzmog,{

Recall from (5.14) that H>e. Then since the function u/log(1l+u) is
increasing for u >2H log H > e, we obtain

2H log H
~ Hlog(1+2Hlog H)’

Using the inequality 1+ 2¢log <%, t>1, we have

2log H
= =1
log H*?

So we have (5.16) and the result.
(IT) t*=a,,
In this case, from (2.9),

a, 1
—d~——~—.
T T(a,) T(x)

*—1=aqa,
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Now if t* <x <7(1 4+ 1/T(7)), then
X—T~T¥—1

and the second part of the first term in the right-hand side of (5.15) already
gives the desired estimate (the first part of the first term can be bounded
above by 1). If x> (1 + 1/T(7)), then

X 1 1
x+a2°  Tarm+12 3

for 7 close to 1, so from (2.1),

Gy T([x+71/2)
o) >O+ 1) >0> 1
O([x+71/2) 37(7)
(Recall that [x+17]/2> 7). Then
*_) ! . Csn -
eQ([Hx]/z)Q(x)[lJr”(T ‘ } <ec4Qm{1+ 5
an\/lig anT(T)\/lic

This will admit the desired estimate, namely,

nx—zt) ]’
A +an( ﬁ}
provided
eC4Q(XW%> Cy(x—1).
But
cootn | eCaQ)/
e T(T)>C8 ) =2 CoQ(x)=Cio>Cro(x—1)

by (2.7), (2.12) and the growth (2.4) of Q, so we have the desired
estimate. ||
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Proof of (5.1) for xe(a,, ay,;,]. Here, much as in the previous range,

jo (s) V. I3 S/azun 7 ds
T .‘IO n S n a S/a2lJn)lJ dS

n plrex12 s \¥
<C, eQ([t+X]/2)7Q(»\)J V. ds
0

J1-=C A21jn
. 7

+ an( d > ds>
[t+x1/2 Az

—1
<G, {‘?Q([T'FXJ/Z)Q(-\‘)_I_{I_FH(X—‘L')} }

a,/1-¢

We must show that the first term on the last right-hand side admits a
bound that is a constant multiple of the second term on the last right-hand
side. Let us write x =a, (so v=n) and [+ x]/2 =a, (so that u <v). If first
u>=n/2, then

A(x) =

0005 )2 i @a—x)
> Cs ﬁ T(an)l/z (‘L’—X) > C6m
a, a, I—C

by (2.6), (2.9). In this case the result follows. If u<n/2,

0000 () 0la) - 0(a,

2 C7 Q(an) > CSHT(an) s > ancll)

by (2.7), (2.10). Since

The result again follows. ||

Proof of (5.1) for xe[ —ay,,,0). Here using the evenness of w and
(4.1), (5.11) as before gives
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A(X) 50 1(S s/a2lJn) st
T ,‘lO (S n, C S/aZIJn)U dS

sl <a2,,,1>”ds>

=l

Here 7~ 7+ |x| =|x — 7| and the result follows. |

c{u

6. PROOF OF THEOREM 1.2

In this section, we prove Theorem 1.2. Recall that our moduli of
continuity are

wr,p(f; w, [) = Sup HM}AZ(D,(X)(f’ X, [ - 1’ 1])H Ly(|x] <ayjop)

0<h<t

+ mf IS =P) Wl Lyay g <1< 1)

Pez,

and

B i 1 1 i 1/p
wr,]](fs w, Z) = <Z JO ”WAZJJ[(X)(]’ X, [ - 1» 1])” Zy(\-\‘l <aj o) dh>

+ inf [(f—P) WHLI,(a] an<Ixl<D)-

PeZ,_,

Of course o, ,<w, ,. We need further moduli of continuity. If 7 is an

r,p =

interval, and f: I — [RQ we define for >0

A, (fit,T):= sup <L|A;,(f, x,1)|"dx>l/1] (6.1)

O<h<t

and its averaged cousin

Q, (fit.]):= <1 jo L 1A7(f, x, )|” dx ds>1/p. (6.2)

Note that for some C,, C, depending only on r and p (not on f, I, 1),

Ci<s4a, (/.02 (/.. 1)< C,. (6.3)
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See [17, p. 191]. For large enough n, we choose a partition
—A, =T, <T1,< -+ <T,,=4a, (6.4)
such that if
L = Tin> Thos 1.0l 0<k<n—1, (6.5)

then uniformly in k£ and #,

1
Ly |~ 1Tl (6.6)
n azn

(|| denotes the length of the interval I.) We also set [, := . There are

many ways to do this. For example, one can choose 7,,:= —a, and for
1 <k <n, determine 7, by

Thn 1 a 1 1
jfk—l, n 7\/% ds/fa“ 7\/% ds= p
Let us set
n—1
L:=[—a,a,]=) I, (6.7)
k=0
and (y;,, »7 denotes the characteristic function of [a, b])
O X) 2= X2y, a,1(X) = 2= 1, (X) (6.8)
We set
It =nL,ul;,,,,0<k<n—1 (6.9)

By Whitney’s theorem [ 17, p. 1957, we can find for 0 <k <n—1 a polyno-
mial p, of degree at most r, such that

IS =Picll iy < Cody (SN 1) (6.10)

with C, # C,(f, n, k, I,).
Now define an approximating piecewise polynomial/spline by
n—1
L,LF1(x) :=po(x) Oo,(x) + 3 (Pr=Pic—1)(X) Opr(X)- (6.11)

k=1

We first show that L,[ f] is a good approximation to f-
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LemmA 6.1. Let ¥,:[ —a,,a,] — R be such that uniformly in n,

¥.(x)~ l—m, xel[—a,,a,]. (6.12)

sy

Then

I(f=L,[f]) WHLI,[—I 1]
Cy/n
<c{[n [ i Fox LDy

1/p

+ HﬁVHL,,(a”\| <) } (6.13)

Here C;# C;(f,n), j=1,2. For p= o0, we replace the pth root and integral
by Supg < < c,n- Moreover, the constants are independent of {¥,}, depending
only on the constants in ~ in (6.12).

Proof.  We first deal with p < oo. Now

n—1

I(f=L,[/]) W”Lp[fl 1= Z 4;,+ HfWHLp(a“\|x\<1)a (6.14)

j=0

where
A= 1= LLIT7 W (6.15)

Note that in (7, 7, ,), L,[ f]1=p,, so that

A= 1f=p 1o wr

L

”M}HL oo (Ljn) CpAfp(f | |7 /n

<IWIZ e w 1\|Lm|,*|f f WAL/, x, I5)|7 dx d,

(6.16)
by (6.2), (6.3). Now from (3.4) of Lemma 3.2(a),
IWIZ ey WML ey~ 1 (6.17)

uniformly in j and n. Moreover, uniformly in j, n, and x e I},
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Then we can continue (6.16) as

/n %
Aj,,\| |LJ \wA(f, x, I}5)|” ds dx

jn

C 11/, ()
] [T ey (o 1)1 di d

| jn| in

Cg/n
<C5n£)6 L WAy o fo %, TP dx d (6.18)

,
Adding over j gives

n—1

Z A,n\csnf f Wl o fox [ =L DI dxdr. (6.19)

This and (6.14) give the result. Note that we have effectively also shown
that

Z rp(f | |7 /n (T'n)
Cq/n
<c5nj j WALy, (fox, [ =1, 11)] dx dt. (6.20)
0 1, n

For p = oo, the proof is similar, but easier: We see that

I(f=L,LfD WH{I(—I, 1)

<max{ max ] ”(f_Pj) WHLmujn)» ‘|ﬁVHL1(a,,<\.x|<1)}'

0<j<n—

The rest of the proof is as before. |

Now we can define our polynomial approximation to f:

on

Pn[f] :=p0(x) Rn,‘r (X)+ i (pk_pkfl)(x) Rn, Tkn(x)' (621)

Note that this has been formed from L,[ ] by replacing the characteristic
function 6,,(x)= Aty a 1(x) with its polynomial approximation R, . (x)
formed in the previous section.
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LEMMA 6.2. Let {¥,} be as in the previous lemma. Then

”(Ln[f] *Pn[f]) WHL,,(—l, 1)

1/p

Cy/n
<C {{njo HWAZ‘I’,’(X)(f; x, [—1, 1])”{,,[714”,%] dh} + |fW|L[,(IO*;)}-

(6.22)

For p= o0, we replace the pth root and integral by sup, _, < ¢, -

Proof. We see that if we define p_,(x)=0,
(L,LfT1=P.LSD(x)

= i (P =Pk 1)(X)(Op(x) = R,, -, (). (6.23)

We shall make substantial use of the following inequality: Let S be a poly-
nomial of degree at most r and [a, b] be a real interval. Then for all
xe[—1,1],

min{|x —al, |x —b|}\"
St < o —a 2 (14T gy e

Here C# C(a,b,x,S) but C=C(p,r). This follows from standard
Nikolskii inequalities and the Bernstein—Walsh inequality. See for example
[17, p. 193]. Hence for xe[ —1,1], and I <k<n—1,

|x_7’-kn|

;
| > 1Pk —=Pr 1| L)
n

Pe—piil (x)scuknrl/f’(l n

This is still true for k=0 if we recall that p_,=0. Now for 1 <k<n—1,
(6.10) gives

k
[ Pkc—Pr—1 HL,,(I,M)< ¢ Z A, (S 1),

i=k—1

where C, # C,(f, k, n). This remains true for k=0 if we set

‘Qr,p(f’ |I>i1,n|5 Iil,n) ::Ar,p(f; |I>x—<l,n|9 Iil,n) = ”fHLp(I:H)
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Since (see (3.5), (6.6)) uniformly in &k, n, and xe[ —1, 1],

|x_Tkn|~1+|x_Tk71,n|

1+
|Ikn| |Ik

—],n|

we obtain from Theorem 5.1, uniformly for 0 <k<n—1and xe[—1,1],

w(x)
(P =Pk~ 1)(X)(O1n(X) — R,,, z,m(x))|
W’(Tkn)
L —1 Ix_Tin| !
<C2 Z |Ii;1| v 1+ |I | Qr,p(f; |Il>lk1|51:§l . (625)
i=k—1 in
Here and in the sequel, we set [/_, ,|:=1[, ,| and 7_, ,:=7, ,. We con-

sider three different ranges of p:
(Iy 0<p<l.
Here from (6.23) and then (6.25)

1

| 0LLr1=2Lr 2wy

n—1

1
<Y | Upe=peoil 100 =R, | 9)?

k=0"—1

n—1

1 ! lx — 7, [\ 07
<Y Ml et v | (145

k= —1 |Ikn|

(6.26)

Here if (r—1)p< —1,

i Ix — 7, [\~ 17 o
1 | <1+|I|"> de< [ (14 |u) 7 du=: Cy< o0,
—1 kn

So
1 n—1
|| OLLAI=PLANw <o S Q11 15) win,)
- k=—1
This is the same as our sum in (6.20)), except for the term for k= —1. So

the estimate (6.20) gives (6.22), keeping in mind our choice of
Ar,p(f; |I>x—<l,n|9lil,n)'
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(II) 1<p<o.
From (6.23), (6.25) and then Hoélder’s inequality,

{ULLAT=P,LAT () w(x)}”

n—1
<c{'S (1

k=—1

|x_z-kn ?

| r—1
Qr,p(ﬁ |Ilzkn |’ I/zkn) W(Tkn)
|Ikn|

n |x—Tk | (r—1)p/2
<€ ¥ il (1) e g 1) ) 5,007
k= —1 kn
(6.27)
where ¢g=p/(p—1) and
n _ (r—1)q/2
SH(X)I: Z <1+|X Tkn|>

k=1 |Ikn|

We shall show that if (r —17) g/2 < —1, then
sup sup S,(x)<C, <. (6.28)

n=1 xe[—1,1]

Note that S,(x) is a decreasing function of x for x >«a, =r7,,, so it suffices

to consider xe [0, a, ]. Recall that

nn»

1 1Tk |
|Ikn|~|1k+1,n|~7 1— . .
aszy,

It is then not difficult to see that
a, |.x — u| (r—=10)q/2 du
S,(x)<Cyn <1 N _—
f a V1= lul/as, V1= lul/ay,

|x_S|>(rl)q/2 ds

1
<C3nj <1+n
—1

where X := x/a,,, so that

l—x=1—a,/a,,>C,T(a,) "' =Csn=2
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We make the substitution (1 —s)=(1—X) w to obtain

- _ (r—10q/2
s.0<Cm/Tx [ )<1+nm|{/1;1|> df

— (12 ny1—x|0=Da2 gy
<C4n«/l—x{jo |:1+ﬁ:| ﬁ

32
+j [14nJ1—%|w—1]1"""9 dw

12

2/(1-x) d
+| [1+n4/(1—x)w]("')‘1/2W}.

32

S

(We can omit the third integral if 2/(1 — x) <3/2.) We now make the sub-
stitutions w=n*1 —x) v in the first integral, v=n./1 —x(w—1) in the
second integral, and v =n%*(1 — X) w in the third integral. It is then not dif-
ficult to see that the resulting terms are bounded independent of n and x
if / is large enough. So we have (6.28). Then using this, integrating (6.27)
(we can assume that (r—/) p/2 < —1) and using (6.20) gives the result.

(II1) p= 0.
Now by (6.23), (6.25)

IL,LST=P,LS ]I (x) w(x)

SC Y =i 11 () 106, — R, o, | (x) w(x)

k=0

! |X—T/,,1| =4
<Cmax @ (AL W) 3 (145
1

—l<k<n— k=0

As before, the sum is bounded if / is large enough. Then we can continue
this as

<Ci{ sup sup (A4S x, TE) wlp az)+ HﬁVHLx(IU";)}

0<k<n—1 0<h<|I},

<Cy{ sup sup HAZq'n(x)(fs X, LE)wlle, oz + ”fWHLK(ISjI)}

0<k<n—1 O0<h<C/n

<C3{ sup HAZ'I/”(X)(f; x, [—1,1]) WL, (—ay.ayt HfWHL%ug;)f |

0<h<C/n

We can now turn to the

Proof of Theorem 1.2. We do this for p < oo; the case p = oo is similar,
but much easier. Now recall that R, , has degree at most 2//n, where J is
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as in Theorem 5.1. So P,[ /] has degree at most 2/Jn+r. So, if M :=31J,
we have for large n

EMn[f]w,p< ”(f*Pn[f]) WHL,,(-],])
SCUS=LLLDwlry—r 1+ ILLFT=PLLD Wlry—1. 1))

Cy/n Up
< Cl {|:n J;) HM}AZY’U(X)(ﬁ X, [ - 1: 1])” Zv(*“n’ a,) dh:|

+ HfW” Ly(a,(1 — Cy[nT(a,)'?]~1) < |x| < 1)}- (6.29)

Here we have used Lemmas 6.1 and 6.2, and also (6.6), which implies that

1 1
g ~= [1—22 = T(a,) 2
n a,, n

Mn<j<Mn+1) (6.30)

Next for

we write
n=xj,

where x =x(j, n). Note that

1
k=t  jo oo (6.31)
j M
Let
M
t:=tj)=—.
(J) o

From (6.30) and (6.31), we have for n>2

W N
g‘\..

<j ! > !
ns—=—;nz =—.
M 2t 3t

We claim that for large enough j,

a,(l1—Cy[nT(a,)"*]1 "= A1/4an)-
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To see this, note from (2.12) that
[nT(a,)'?1 "' =0(T(a,) ")

so that by (2.9)

a,(1-C.[nT(a,)'*] ") >a, <1 -’ <T<2)>> Z

= A1+ o(1)) 230 = A1 +o(1))/30) Z D1/ar)
for large enough j. Then from (6.29),
E [f]u p\ Mn[f]w,p

1/p

1 3Gt )
< {5 [ W B T LDy

(21))

W £y gy < 131 < 1)}- (6.32)

Now we choose
Y . =3C,) '@,

We must show that (6.12) holds with constants independent of x, j and n,
that is,

3G o~ 1= i<,

sy

But for this range of x, (2.9) shows that

/ - / 1= a2 =, ) ~ )

aZn sy

by Lemma 3.1(b). Setting &, :=h/(3C,) so that h¥,=h,®, we can rewrite
(6.32) as

1/p

3C, ! )
E [f]H r S {|:2[2 JO HWA;IICD,(X)(f’ X, [ -1, 1])“ Z,,(—ul/(m, ajy ) dhl

+ HfW”L[,(u] an <Ixl < 1)}-
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Replacing f by f— P for suitable Pe# _,, and using A}y g Py X
[—1,1])=0, we obtain

Ej[f.]wp:E'[f‘_P]WP
1/p
{{ j WA 0,00 X L=L AN a0 a) @1

+ inf [|(f—P) W|Lp(al(4,)<|x|<1)}

Pe?,
M
= C3(Z)r,p(ﬁ w, t) = C3(’ar,p <f; w, 2> . I
J
For future use, we record a slight generalization of Theorem 1.2:

THEOREM 6.3. For j= C;,

E[f].,<C, inf @, <f W, CJ”) (6.33)

pel[3/4.1]

where C,.# Ci(j, p, f), k=1,2,3.

Proof. The only difference to the above proof is that we choose
t := Mp/2j. Then uniformly for pe[3, 1],
nMp p

2y 2 T

nt=

and as p/2>3/8>1/3, we have for j=j,#jo(p, f, t)

The previous considerations then remain the same, as does our choice of
the point being that (6.12) holds uniformly in p. |

}7 >

7. THE PROOF OF THEOREM 1.3
We begin with a technical lemma:

Lemma 7.1. (a) For 0<s<t<C,

T(al/,)< a::><c1 10g< ;) (7.1)
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(b) For0<s<t<C,

.s‘(x) t
B0 S sz- (7.2)

S

sup

Hence, given y> 0,

s\ D (x)
su - ‘ < ;. 7.3
xe[}l),lj <l> D,(x) ’ (7:3)

Proof. (a) Using the inequality 1 —u <log(1/u), ue€ (0, 1], we obtain

l—mglogal/‘fgC}lOg(C[/s),
ays Ay, T(al/t)
by (2.11).
(b) Now if x>0,

’1_x <‘1_X x|y e

Ay Ayl Ay ays
t
<‘1—x +C5T(a1/,)llog<C>
al/, N

by (a) provided 7 < C, say. We deduce that

12 /
< Ce®P,(x) [log <2 +>,
\ s

and since also T(a,,) "*< C;T(a,,) ', we obtain (7.2). Then (7.3) also
follows. |

X
’ 1 Cay,
al/s

We turn to the proof of Theorem 1.3. We provide full proofs only where
the details are significantly different and otherwise refer back for proofs.
We begin with an analogue of Lemma 6.1 for L,[ ] of (6.11).

LEMMA 7.2.

I(f—L,[f]) WHLI,[fl, 1]

< Cl { sup HM}A ;thh(x)(f; X, [ - 1’ 1 ])H Lyl —ayaps ayyam]
0<h<1/(3n)
O<z<L

+ HfM}HLp(ang\x\g])}' (7.4)

Here L is independent of f, n.
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Proof. We do this for 0 <p < oo; the case p = oo is simpler. Recall that
the crux of Lemma 6.1 is estimation of

4= L (1f =pslw)”

Q, (LG L) wh(ty,)

|j j A fox 12)1 ds di. (7.5)

(See (6.16).) We now choose L >0 such that

sup (h/L) ¢h/L(x)<l

T S5 0<h<l. 76
xe(—1,1) héh(X) 2 ( )

This is possible by (7.2). Now we choose
Op k(x):=L""*3n) " ®p1kzp-1(x), k=1
Note that by (7.6),

sup  Qwkei®) 1
xe(—1,1) 5n,k(x) 2

In view of (6.6), (3.6), and (3.7), we may assume that L is so large that
uniformly in #, j, x € I}

jns

(7.7)

51 <5 P a0 = L0, ()
and
(5] ~ 0, 1(x).
Then from (7.5),

Lo, (x) 1
J"\C3 j’m‘[o (5n,1(x)|WA (fs x, 15, Jn )7 ds dx

D ~LS, 1(X)

=C, Lﬂ, kzl Lo, () O, ]( ) IwA'(f, x, I}%)|7 ds dx
&0, k(X

-G j’/: k=1 5211295; JLén_,M(x)/tsn_k(x) lwds oy X, Ln)] 7 de dx
© Nk

<G hr kgl <2> Jo lwA (v)(f x, I¥)|? dr dx.
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Then as also n<1/(2h) for 0 <h<1/(3n),

n—1

ay > L
S A, <Cs [ Y G, (=1 1) ded
j=0

Ty k=1 0

ay)(2h)
<2Cs sup [ pwdy (fox (L D)7 dx (78)
0<h<1/(3n)

—4a1/2h)
O0<t<L

The rest of the proof is as before. |
We turn to the

Proof of Theorem 1.3. The method of proof of Lemma 6.2 gives at least
for p < oo,

H(Ln[f] _Pn[f]) WH[L)[,[fl,l]

A1/(2h) .

<Cysup [ el X (= LD dx ] -

0<h<1/G3m) Y —ay K PRE0n
O0<t<L

(We substitute for (6.20) the appropriate estimate (7.8) in the relevant
places.) The rest of the estimation is almost the same as in the proof of
Theorem 1.2. We can still choose ¢ := M/(2j) and still have 1/(3n)<t. |

Finally, we briefly show that under some additional conditions on Q, we
can use the simpler modulus

w:fép(.f; M}’ t) = Sup HM)Athdfuh(x)(f; X, (7 17 l))HLI’(_Hl/(Z/x)’”1,(211))

O<h<t

+ inf [[(f—P) W”L,,(al an<lxl<1)> (7.9)

Pe?, |

with L fixed as above. We do this for p <oo; p=o0 is easier. We shall
assume in addition to we & that Q" exists and is non-negative in (0, 1),
and that

xe(0,1) (7.10)

and

|T'(x)| < C, T*(x), xe(C,1). (7.11)
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Using (7.10) and the method of proof of Lemma 3.2 in [10, p.24] we
obtain
a, 1

(Note that 7" has a different meaning in [10], but has the same rate of
growth as the T here, because of (7.10).) Moreover, using (7.11) and (7.12)
it is not difficult to see that

d
STy ) <G Tlay) " e (0,0)

and hence also

d
‘d[ <m>,(x)>‘ <C,,(x) (7.13)
for
| x| &
0<1<Cy: ‘1—/ . (7.14)
¢ ayy, T(al/t)

Here ¢ is any fixed positive number. We now estimate 4, a little differently
from the way we proceeded after (7.5). Let us make the substitution
s=Lt®,(x) in the right-hand side of (7.5), keep our choice of L there, and
recall that

L
| |\ ¢l/3n( Xx), xel},

n

to deduce that

1/(3n)
jn = CS J‘ J‘ : |M/A Ltd (x)(f X, jﬂ)|p
I (1/(3n)) ¢l/(3n)( X)

1/(3n)
<C6nj j llog <2+ > WA o fo X TP dt dx

by first (7.13) and then (7.2). In applying (7.13) we must ensure that the
range conditions in (7.14) must hold for xerl and r<1/3n. In fact if
|x| <a,, then for 1< 1/3n,

—[trD( )]‘dtdx

>1-">C,T(a,) ' > CyT(ay,)
a3n

1 ——

‘ |x]
al/t
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a, 1/(3n) 1
<Con [ [ |log <2+3m> WA (o X, (=1, 1)|7 dt dx

—a, Y0

n

ayon ! 1
<c,, sup J‘ 1/(2) |WAthd>,,(x)(f’ x, (—1, ]))|1’de log <2+> ds.
0<h<1/(3n) " —ayopn 0 :

So under we &, and the additional conditions (7.10), (7.11) on Q, we
obtain

1
ELf]l.,<Cnho, (ﬁ w, n> (7.15)

We note finally that the additional conditions (7.10) and (7.11) are
certainly satisfied for w, , of (1.5).
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